需求
这个blog放了好久。最近在试着搭一点ai的模型案例测试一下,重新找出来记录一下~
主要想打一个图像检测的本地模型,以及一个文本知识库进行测试。这个先记录一下用yolo11来做视频物体识别的部署。
安装anaconda
首先本地最好能虚拟独立python环境来跑,本次就用anaconda来建环境。
官网下载地址
官网下载安装就完了。
GPU版本CUDA安装
首先yolo11跑训练推理基于pytorch,pytorch需要CUDA来跑GPU版本,CPU版本估计跑起来会慢。但其实简单跑训练推理应该默认安装pytorch的时候就会装上需要的依赖了,这一步不一定需要安装。
安装的话查看cuda的版本,然后到官网下对应的版本:
cuda下载
cudnn下载
然后装完看版本正常就ok:
pytorch安装
之后就都是在conda环境安装了,建一个新的环境,默认勾了python选个版本就行,这里用的python3.12.9。然后打开环境的命令行安装后续:
pytorch官网按照版本安装:
官网链接
选小于等于自己CUDA版本号的,官网没有提供conda安装了,就直接都用pip吧:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
如果电脑装过一些奇怪的代理之类的,pip安装遇到和我一样的错误:“ssl module in Python is not available” ,可以参考:
https://stackoverflow.com/questions/41328451/ssl-module-in-python-is-not-available-when-installing-package-with-pip3#:~:text=The%20problem%20can%20be%20caused%20by%20DLLs%20in,which%20replaces%20the%20dlls%20by%20more%20recent%20versions.
更新个新的ssl库解决下。
安装完成后,检查下没问题就ok了:
YOLO11 ultralytics配置和测试
之后就是ultralytics库了,官方文档起始都很详细了,我这里就直接拉源码下来跑了。
文档地址
简单测试一下代码跑一下照片的识别,输出在user下run文件夹里:
如果都正常,那就没啥问题了。就先到这,后面再说说检测视频流的简单实现。
建议中间各种安装需要拉包下载啥的,尽量都找梯子开代理吧。改源啥的费事效果也不一定好,试来试去还是翻一下最方便了。
然后如果运行的时候torch报错,可能还是安装的时候哪里有错还是覆盖了什么,建议pip uninstall torch相关的包,然后再跑一下官网那个安装链接就ok了。