Vlog 是短视频发展的新催化剂?

640?wx_fmt=jpeg

题图:by ben.pinto from Instagram

阅读本文大概需要 6 分钟。

 

上周末,我逛下 B站,偶然发现 B 站打出“在 B 站,用 vlog 记录不平凡”的活动。这引起我浓厚的兴趣,于是乎,就有了今天这篇思考文章。

1. 

这两年来,短视频行业发展可以是爆发增长。这期间诞生很多成功的产品,例快手、抖音等。

快手诞生比较早,它凭借 9 年时间的运营积累,现成为用户量最多的短视频应用。而风头正劲, 非抖音莫属。抖音利用视频结合背景音乐作为爆点,实现用户量指数增长。这也逐渐形成“北快手,南抖音”的格局。

但是在 2018 年下半年,抖音虽然用户量在增长,但是增长速度变缓慢,有趋于稳定的趋势。不过这也符合一款产品的发展趋势。任何一个产品都有其生命周期,一款产品发展趋势大致划分为 4 个阶段。

640?wx_fmt=png

第一阶段:启动期——功能、内容不全,用户极其稀少;

第二阶段:扩展期——内容和用户开始迅速增长;

第三阶段:稳定期——内容生态规则基本完善,内容仍在增长,但内容消费频次降低,用户增长放缓;

第四阶段:衰退期——内容和用户都开始减少。

另外,当产品处于稳定期时,如果产品还能找到新的增长点,还能迎来新的扩张期。

纵观全局,短视频行业市场、用户增长增速变缓。我从中国产业信息网站了解到,截止到 2018 年,短视频的用户规模已经达到 3.53 亿人, 预计 2020 年达到 6.67 亿。

640?wx_fmt=png

市场资本规模在 2018 年突破百亿大关,预计 2020 年能达到 350 亿。

640?wx_fmt=png

2. 

近来刮起全民 vlog 风又是什么鬼?这里要先了解什么是 vlog。

vlog 全称是 Video Blog,即视频博客。它是一种以视频形式记录生活、学习、工作的点点滴滴。vlog 着重记录的是创作者自己的生活,以创作者为中心输出视频内容。它的内容形式可以是一场旅行、一场表演、一次烹饪、一个开箱秀等等。

3. 

我为什么说 vlog 是短视频发展的催化剂?

vlog 的时长没有很明确的界定。而短视频顾名思义是短小的视频,视频时长从 15 秒到 60 秒不等,最长也在 60 秒左右。因此,vlog 时长把控会更加灵活,能根据创作者场景的需要,制作适当时长。目前我关注到的 vlogger 的大多数视频时长是 3 到 5 分钟。这个也跟网传抖音正在内测长达 5 分钟的长视频相呼应。

vlog 是以视频为表现手法。所以创作者离不开视频拍摄,视频剪辑。手机具备现场拍摄、现场编辑、现场发布等优势,另外有抖音、快手、VUE 等现成应用工具,这大大降低普通人成为一名 vlogger 的门槛。

现在是自媒体时代,一个普通人可以借助自媒体平台来展示自己,打造个人 IP,成为一名网络达人。传统的表现手段是文字,视频方式则比较新颖,也鲜为人用。

同时,vlog 也算是的一种原创内容输出。现在一些平台对原创内容的博主扶持很大,例如 B 站。一共 3 个扶持计划,有创作激励计划,当博主满足申请条件(1000 粉丝或 10 万播放量时),以后每 1000 个播放量,B 站都会给予一定的收益;有充电计划,粉丝可以给博主进行充电,类似微信的赞赏功能;有悬赏计划,博主加入悬赏计划后,即可在视频播放页加入一些广告来收取广告曝光费用。当然,博主也可以通过接广告形式赚取收入。

4. 

既然 vlog 是现在的热点,我能该如何成为一名 vlogger?

你只需要一个手机,一个平板等这样的拍摄设备,几个专业视频编辑软件,然后寻找自己擅长的领域,最后专注输出视频内容。

640?

推荐阅读:

如何发现并参与开源项目

该死的拖延症



不积跬步,无以至千里


640?wx_fmt=jpeg

长按二维码,添加关注!


资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值