动态规划题解——分割等和子集【LeetCode】

416. 分割等和子集

一、算法逻辑(每一步思路)

❓ 问题描述:

给定一个只包含正整数的数组 nums,判断是否可以将其分成两个子集,使得这两个子集的元素和相等。


✅ 思路解析(DFS + 记忆化)

1. 总和判断:
s = sum(nums)
  • 只有当总和是 偶数 时,才可能被分成两个相等的子集;
  • 否则直接返回 False
2. 定义目标:

我们目标是找到一个子集,使得其和为 target = s // 2


3. 定义状态:
dfs(i, j) 表示:是否可以从 nums[0..i] 中选出一些数,使得它们的和为 j
4. 状态转移逻辑:
  • 我们每个数都可以选或不选:
dfs(i, j) = dfs(i-1, j-nums[i])  # 选 nums[i]
         or dfs(i-1, j)          # 不选 nums[i]

前提是:

  • 当选 nums[i] 时,必须保证 j >= nums[i] 否则非法。
5. 边界条件:
  • i < 0 表示没有数可以选了,此时只有当 j == 0,才能说“成功凑出目标和”。

6. 初始调用:
dfs(len(nums)-1, s//2)
  • 从所有数中尝试凑出 s//2
7. 使用 @cache 实现记忆化,避免指数级重复递归。

二、算法核心点

✅ 核心思想:子集和问题 + 记忆化搜索

  • 本质是 0/1 背包问题:能不能从 nums 中挑若干个数,使它们的和为 target = s // 2
  • DFS 方式天然适合尝试所有选法;
  • 用记忆化优化重复状态访问,转为多项式级别复杂度。
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        @cache
        def dfs(i:int, j:int)->bool:
            if i<0:
                return j==0
            return j>=nums[i] and dfs(i-1, j-nums[i]) or dfs(i-1, j)
        
        s = sum(nums)
        return s%2==0 and dfs(len(nums)-1, s//2)

三、复杂度分析

  • 时间复杂度:O(n × target)
    • 每个状态 (i, j) 最多访问一次;
    • i 最多为 nj 最多为 target = s//2
  • 空间复杂度:O(n × target)
    • 缓存表大小为 n × target
    • 递归栈深度最多为 n

总结表

维度

内容

✅ 思路逻辑

转化为是否可以从数组中选出若干数,使它们的和为总和的一半

✅ 核心技巧

记忆化搜索 + 状态定义 dfs(i, j)

✅ 时间复杂度

O(n × s//2),即 O(n × sum/2)

✅ 空间复杂度

O(n × sum/2),包括递归栈和缓存


✅ 示例演示

输入:

nums = [1, 5, 11, 5]

总和为 22,可以划分为 [11] 和 [1,5,5],输出为 True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值