(linux)Faster-RCNN pytorch目标检测1:环境配置gpu+anaconda+pycham+ RTX2080ti 笔记

该文详细介绍了如何在Linux环境下,利用Anaconda创建Faster-RCNN的虚拟环境,配合PyCharm进行项目配置,以及如何安装特定版本的PyTorch、CUDA和相关依赖库,包括opencv和预训练模型,为目标检测任务做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

(linux)Faster-RCNN pytorch目标检测1:pytorch1.10.1环境配置gpu+anaconda+pycharm+RTX2080ti 笔记,包括如何在anconda创建Faster-RCNN虚拟环境和用pycham为项目配置Faster-RCNN虚拟环境。

  1. 部分参考: Faster-RCNN.pytorch的搭建、使用过程详解(适配PyTorch 1.0以上版本)

  1. Faster-RCNN pytorch1.0链接https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0,建议直接下载后提取

  1. 如果无法上github,百度云盘链接:https://pan.baidu.com/s/1mde9g4FN68TTPamRMl_kBw?pwd=s5sb 提取码:s5sb, 或者csdn资源Faster-RCNNpytorch1.0,vgg16-caffe.pth和resnet101-caffe.pth包含Faster-RCNN pytorch1.0源码和要用到的预训练模型vgg16_caffe.pth、resnet101_caffe.pth

  1. pycharm汉化Pycharm汉化简单图文教程

anconda虚拟环境创建

  1. 在Faster-RCNN pytorch文件夹打开终端,创建:conda create –n farcnn python=3.6

  1. 激活:conda activate farcnn

  1. nvidia-smi确认自己的cudaVersion

  1. 不要直接用pip install -r requestment.txt文件安装,linux系统不会看你目前环境是否有包已安装,并直接默认安装cuda=11.7的最高版本pytorch.

  1. 安装pytorch:conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge

  1. 单独安装对应版本的opencv,在Links for opencv-python 下载,然后pip install opencv_python-4.2.0.34-cp36-cp36m-manylinux1_x86_64.whl

  1. pip install scipy==1.2.1

  1. pip install msgpack

  1. pip install easydict

  1. 其他包就由pycharm配置,关闭终端,打开pycharm

用pycham为项目配置yolo虚拟环境

  1. 用pycham打开Faster-RCNN pytorch项目

  1. pycham为项目配置虚拟环境

  1. 取消自动创建,配置我们刚刚创建的环境

  1. 点击设置

  1. 选择刚刚配置的farcnn虚拟环境的python3.6文件,一般在(anaconda安装路径) /anaconda/envs/farcnn/bin内(下图是其它项目的,类似路径)

  1. 最后一路点确定

  1. pycharm打开终端,如果你成功选择了相应的虚拟环境,()内就会显示你的虚拟环境名称

  1. 打开requestments.txt,点击“安装要求”,pycharm就会配置其余的包

  1. 等待项目环境配置完成

编译

关闭pycharm,在Faster-RCNN pytorch文件夹打开终端,激活farcnn虚拟环境,依次执行

conda activate farcnn

cd lib

pyhon setup.py build develop

等待编译完成

环境配置完成

训练见后续(linux)Faster RCNN-pytorch1.0目标检测2:训练自己的数据集,gpu,pycharm, RTX2080ti,训练笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值