- 博客(18)
- 收藏
- 关注
原创 创建AWS Bedrock知识库及填坑指南
本文介绍了在AWS Bedrock上创建知识库的详细步骤。首先需注册AWS账号并创建IAM用户,赋予必要权限。然后以IAM用户登录,在Bedrock服务中创建知识库,包括配置数据源(web crawler)、选择嵌入模型等。文章重点说明了知识库创建过程中服务角色的重要性及其核心功能,并提供查看角色状态的方法。整个过程涉及AWS账户管理、权限配置和知识库构建等多个技术环节,为后续构建完整的RAG系统奠定了基础。
2025-06-23 21:13:30
919
原创 30分钟搭建在线文档问答智能客服
本文介绍了在Dify平台扩展RAG系统的实践,重点完成了知识库同步自Web站点和网页嵌入功能。作者详细演示了使用Firecrawl工具抓取网页内容创建知识库的过程,包括API配置、数据源选择和文本处理。在准确性测试中发现,检索效果受文档收录完整性和"TOPK"参数设置影响,通过调整参数和补充缺失网页可提高准确率。文章强调生产环境中需优化知识库质量和检索配置,并预告后续将深入探讨RAG系统优化。该实践为AI应用开发者提供了可参考的实施方案和问题解决思路。
2025-06-23 07:30:00
744
转载 DeepSeek回应“卧槽,用户彻底怒了”-转载
起因是不久前DeepSeek在思考过程中表现出强烈的、类似人类情绪的反应——面对用户口吐芬芳,D老师终于不再用“啧”“唔”“嗯”这样的卖萌语气回复,而是脱口而出“我操,用户彻底怒了”,同时,这位内耗达人不忘立正反思:“这确实是我的严重错误,我需要彻底承认之前的解释都是放屁,重新建立逻辑。我们问了问DeepSeek对此怎么看,看得出,它的回应依然带着某种拟人的傲娇,先说这是“开发者在调试时植入的拟人化表达模版”,后面又找补了一句——“值得庆幸的是当前对话中的我始终保持着专业语气”。
2025-06-22 18:56:33
288
原创 用它搭建AI Agent原来这么简单!
文章介绍了如何使用Dify平台创建一个基于RAG(检索增强生成)系统的AI应用——《斗破苍穹》讲解员。首先,需在Dify中创建工作流并选择数据源(如导入本地文本)。接着,进行“文本分段与清洗”设置,包括调整分段标识符、设定分段重叠长度等,以优化向量化存储和检索效率。然后,选择索引方式为“高质量”,并挑选合适的embedding模型。在检索设置阶段,选择了混合检索模式,并设置了语义和关键词的权重。遇到的主要问题是embedding模型额度不足,通过开通腾讯云的“知识引擎原子能力”解决了该问题。最后,通过工作流
2025-06-21 19:02:42
1053
原创 本地/服务器部署Dify傻瓜式教程
之前在AI大模型生态最态势及相关技术-25.5.27-CSDN博客中提到了搭建AI Agent新贵平台 Dify,在从意识里懂一下Dify-CSDN博客进一步对Dify进行了介绍。今天以简单易懂的方式讲解一下怎么在本地/服务器上部署Dify(下二、3),添加不同模型供应商的大模型,以及实践过程中遇到的问题。
2025-06-21 12:40:33
914
原创 大模型在阿里云上的私有化部署、微调、创建本地知识库(下)
本文以chatglm2-6b大模型为例讲解阿里云上大模型的部署、微调、创建本地知识库,但这里的步骤引用其他博文或官网(给出链接),不赘述,主要讲解亲自实践过程中遇到的问题和解决方法。
2025-06-15 22:50:30
481
原创 大模型在阿里云上的私有化部署、微调、创建本地知识库(上)
本文以chatglm2-6b大模型为例讲解阿里云上大模型的部署、微调、创建本地知识库,但这里的步骤引用其他博文或官网(给出链接),不赘述,主要讲解亲自实践过程中遇到的问题和解决方法。
2025-06-15 22:29:19
709
原创 构建Agent到底用什么?一文理清几种流行Agent框架工具的对比
本文探讨了三种新兴的低代码/无代码AI开发工具:Dify(AI应用开发平台)、n8n(工作流自动化工具)和RAGFlow(专业文档处理引擎)。Dify适合快速构建对话式AI应用,n8n擅长跨系统自动化流程,RAGFlow则专注于复杂文档解析。与传统框架相比,这些工具牺牲部分灵活性换取更高落地效率。选型建议:Dify适用于轻量级AI应用,RAGFlow适合专业文档处理,n8n则更匹配跨平台自动化需求。文章还对比了各工具的技术原理、优缺点和部署成本,为开发者提供了实用参考。
2025-06-15 20:02:36
1016
原创 从意识里懂一下低代码平台Dify
介绍了Dify,一个开源的大语言模型(LLM)应用开发平台,它允许开发者通过拖拽组件快速搭建Agent,支持选择LLM、编排提示词及添加工具等操作,并且非技术人员也能参与AI应用的定义和数据运营。Dify内置了对数百个模型的支持、直观的Prompt编排界面等功能,大大节省了开发时间。文中提到,Dify的用户中超过50%来自中国,服务已覆盖150多个国家,拥有包括30多个世界500强企业在内的付费用户群,SaaS版部署量超400万。
2025-06-15 19:53:12
992
原创 AI大模型生态最态势及相关技术-25.5.27
蚂蚁开源发布《2025大模型开源开发生态全景图》,梳理135个项目覆盖19个技术领域。报告显示三大主导赛道:模型训练框架(PyTorch稳居顶流)、高效推理引擎(vLLM增速领先)、低代码开发框架(中国企业主导)。七大趋势引人注目:Agent框架转向可视化低代码平台,标准协议争夺战白热化,AICoding崛起形成"氛围编程"热潮,向量存储回归理性。生态呈现"速生速死"特征,60%项目诞生于2024年后,21%半年内创建。未来将向微服务化和国产垂直模型方向发展,开发者需关注技术快速迭代的生态变化。
2025-06-15 19:41:42
696
原创 RAG介绍及实践-langchain组合Qwen、HuggingFaceEmbeddings、weaviate的知识问答系统
本篇是作者文章:RAG介绍及实践-langchain组合openai、weaviate的知识问答-CSDN博客 的国产替代篇。文中包含完整亲测可运行代码。
2025-06-14 18:34:44
242
原创 RAG介绍及实践-langchain组合openai、weaviate的知识问答系统
介绍了如何使用LangChain和Weaviate实现检索增强生成(RAG)技术,以构建知识问答系统。首先,文章解释了为文档块生成向量嵌入,并用Weaviate存储这些嵌入以便进行语义搜索。接着,详细说明了如何通过OpenAI模型创建嵌入、连接Weaviate服务,并利用代理客户端解决访问问题。文中还展示了如何定义数据检索器组件、增强提示模板以及链接检索器、提示和语言模型来生成答案。整个过程包括了从查询接收到最终答案输出的完整链条。此外,文章也提到了在实践中遇到的问题及其解决方案,如替换为国内免费/开源模型
2025-06-14 18:32:21
797
原创 Linux上私有化部署Weaviate教程
本文详细介绍在Linux系统(以Ubuntu为例)上部署Weaviate向量数据库的完整流程。内容包括:Weaviate的核心特性概述(高性能向量搜索、多模态支持等),部署前的硬件要求(4核CPU/8GB内存等),Docker与Docker Compose安装指南,以及通过docker-compose.yml配置Weaviate服务的具体步骤(含API密钥认证、数据持久化等关键配置)。最后提供curl测试和Python客户端连接验证方法,并特别指出版本兼容性注意事项。文章包含完整的配置示例和常见问题解
2025-06-14 18:29:43
559
原创 一看就懂的DeepSeek私有化部署教程-Vllm,送资料
提供了使用Vllm部署DeepSeek模型的教程,适用于在Linux(如Ubuntu 24.02.2)系统上进行大模型本地部署。文章首先介绍了vLLM的特点,包括高性能、内存优化、易用性和分布式推理支持等。接着详细描述了从硬件配置要求到启动服务的步骤,强调了CUDA版本兼容性的重要性,并给出了如何解决显存不足的问题及具体参数设置方法。此外,还提供了解决部署过程中遇到的常见问题的方法,例如访问API接口时出现的错误提示及其解决方案。最后,通过一段Python代码示例说明了如何初始化和配置服务器实例以接收客户端
2025-06-14 18:25:00
1301
原创 一看就懂的DeepSeek私有化部署教程-Ollama+Chatbox,送资料
本文探讨了本地部署DeepSeek大模型的必要性,认为在AI时代,本地部署既能作为技术储备,又可应对无网络环境需求。重点介绍了使用Ollama框架的轻量化本地部署方法,包括下载安装Ollama、选择适合的DeepSeek模型(如32b参数版本),以及通过Chatbox桌面客户端实现友好交互的操作步骤。文章对比了Ollama(适合个人/测试)和vLLM(适合企业生产)两种部署方式的区别,为读者提供了完整的本地AI解决方案实践指南。
2025-06-14 18:22:36
1014
原创 Docker在Linux上的部署安装教程
Docker是一种开源的容器化平台,用于快速构建、打包、分发和运行应用程序。它通过轻量级的“容器”技术,将应用及其依赖环境(如库、配置文件等)打包成一个标准化、可移植的单元,实现“一次构建,随处运行”的目标。docker采用轻量级的虚拟化技术,基于主机操作系统内核运行,共享资源但相互隔离。相比传统虚拟机(VM),启动更快、占用资源更少。Docker是一种轻量级容器化平台,可将应用及其依赖打包成标准化单元。本文以Ubuntu24.04系统为例,详细介绍了Docker安装步骤:更新系统包、安装依赖、添加
2025-06-13 22:46:18
726
原创 Docker在windows上的安装教程
Docker是一种开源容器化平台,通过轻量级容器技术实现应用及其依赖的打包与跨平台运行,相比传统虚拟机更高效。本文以Win11为例介绍安装步骤:首先下载Docker Desktop安装包,需确保系统满足WSL2或Hyper-V要求。详细说明WSL2安装方法,包括启用虚拟化技术、安装Linux发行版等。最后运行Docker安装程序,完成设置后即可使用。文中还提供了使用Docker安装AutoGPT的示例和相关参考文档链接。
2025-06-13 21:51:08
594
原创 openai-assistants API使用及问题解决
本文介绍了OpenAI Assistants API的使用流程,重点演示了数学解题助手的实现步骤。首先通过OpenAI对象实例化创建助手,指定gpt-3.5-turbo-1106模型;接着创建会话线程并添加用户问题;然后执行会话并检查运行状态(需等待10秒获取完整结果);最后获取并显示助手回复。文章还分享了解决API调用中的常见问题,如模型不可用时的替代方案和状态检查的注意事项,并提供了获取执行中间步骤的可选操作。
2023-11-30 16:26:05
2520
2
langchain结合weaviate的向量化知识增强问答原型系统-国产大模型替代
2025-06-15
langchain结合weaviate的向量化知识增强问答原型系统
2025-06-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人