目录
基于LLM(大语言模型)+ Agent(智能体)的代表性产品实现原理和实现细节:
论文名 |
目标 |
方法 |
发表前 |
发表后 |
不足 |
Attention is All You Need |
解决序列模型(如RNN、LSTM)在处理长序列时的效率低下和长期依赖问题,提升并行计算能力,并简化模型结构。 |
通过引入Transformer架构,采用自注意力机制,替代RNN的顺序计算,使模型能够捕捉全局依赖并实现并行处理,极大提高计算效率。 |
RNN、LSTM等序列模型在处理长序列时存在梯度消失、计算效率低的问题,训练时间长,难以并行化。 |
Transformer模型彻底改变了自然语言处理的模型设计,成为后续大规模预训练模型(如BERT、GPT)的基础,推动了语言模型的性能飞跃。 |
Transformer需要更多计算资源,特别是在大规模模型训练时,训练成本高。此外,它依赖大规模数据,训练时间和硬件要求较高。 |
GPT-3: Language Models are Few-Shot Learners |
探索通过大规模语言模型实现少样本学习(Few-shot learning),让模型在无需大量任务特定训练数据的情况下完成多种语言任务 |
使用超大规模参数模型(1750亿个参数),并在海量无监督文本数据上进行预训练,使模型能够通过极少的示例或提示完成新任务。 |
传统的自然语言处理模型需要大量标注数据进行任务特定训练,缺乏泛化能力,难以实现跨任务的学习。 |
GPT-3展示了少样本学习的潜力,大幅减少了为每个特定任务收集大量数据的需求,为通用人工智能(AGI)提供了初步的模型框架。 |
模型规模过大,训练和推理成本非常高;此外,虽然GPT-3在少样本学习中表现优异,但其仍然难以应对复杂的推理任务,并且容易产生不可靠的输出。 |
ReAct: Synergizing Reasoning and Acting in Language Models |
通过将推理与行动结合,使语言模型不仅能进行语言生成,还能在交互环境中进行任务执行,解决传统模型仅限于静态语言生成的问题。 |
结合语言模型的推理能力和行动能力,设计一个能够进行多步骤推理的智能代理ÿ |