源码安装l CUDA 10.0, cuDNN 7.3 and build TensorFlow (GPU) from source on Ubuntu 18.04

本文详细介绍了如何在Ubuntu 18.04上从源代码安装CUDA 10.0、cuDNN 7.3、NCCL 2.3.5,然后安装Bazel 0.17.2,并构建TensorFlow 1.11rc的GPU版本。步骤包括安装GCC,下载CUDA和cuDNN的deb文件,验证安装,安装NCCL,配置Bazel,克隆TensorFlow源代码,配置和构建TensorFlow,最终获得支持GPU的TensorFlow。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更糟糕的CUDA 10.0和cuDNN 7.3版本我真的很想在我新建的机器上试用它。问题是pip包TensorFlow 1.11rc不支持最新的CUDA版本,我需要从源代码构建它。整个过程对我来说相当痛苦,最后我完成了它后,我决定再次完成所有步骤并在空的Ubuntu机器上从头开始设置。

我的出发点是配备i5-8600 CPU 3.10GHz,16GB DDR4,GTX 1080,刚刚安装Ubutnu 18.04 LTS的机器,我们将:  
1。安装CUDA 10 + cuDNN 7.3 + NCCL 2.3.5 
2.安装Bazel 0.17。 2 
3.构建和安装TensorFlow 1.11rc  
在您的情况下,软件包版本可能更新,但假设整体步骤将保持不变。

1.安装CUDA 10.0 + cuDNN 7.3 + NCCL 2.3.5

1.1安装CUDA 10.0

NVIDIA网站上可以找到很好的安装指南。但以下是我的空机器所需的步骤

1.1.1安装gcc:sudo apt-get install gcc 
1.1.2 下载包。对我来说是Linux / x86_64 / Ubuntu / 18.04 / deb(本地)
1.1.3通过运行以下命令安装CUDA
sudo dpkg -i cuda-repo-ubuntu1804–10–0-local-10.0.130–410.48_1.0–1_amd64.deb
sudo apt-key add /var/cuda-repo-10–0-local-10.0.130–410.48/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

1.1.4安装完成后,通过在文件末尾运行
nano ~/.bashrc
添加  
<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值