matplotlib使用

这篇博客通过Python的matplotlib库进行数据可视化操作,包括折线图、散点图、正态分布图等,并展示了如何设置图表标题、坐标轴标签、颜色和标记样式。示例中涉及numpy、pandas和seaborn库的使用,以及读取CSV文件和网页数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
"""
Created on Sat Jun  2 09:33:53 2018
@author: chase
"""
#import numpy
#x = numpy.array([1,8,5,4])
#y = numpy.array([[1,4,3],[4,5,10],[7,18,9]])
#print(x)
#print(y)
#print(x.sort())
#print(y.sort())
#print(x.max())
#print(y.max())
#print(y[0:2])

import pandas as pd

#p = pd.read_csv(r"C:\Users\chase\Desktop\hexun.csv")
#print(p.describe())
#print(p.head())


#k = pd.read_html("http://datacenter.mep.gov.cn/websjzx/dataproduct/resourceproduct/queryResourceList.vm?rcode=01")
#print(k)
#k = pd.read_table("C:/Users/chase/Desktop/abc.txt")
# index_col=0:设置第1列数据作为index


#print(k['id 文章 阅读数'])


import matplotlib.pyplot as plt
import numpy as np
x = [1,2,3,4,5]
y = [10,9,18,57,26]


#plt.plot(x,y,'--')#
#plt.scatter(x,y,c='r') # c设置颜色


#plt.plot(x,y,"*--r")

"""
     -实线   --短线  -.短点相间线   :虚点线
     线条的颜色
     b---blue   c---cyan  g---green    k----black
     m---magenta r---red  w---white    y----yellow
     控制标记风格
    标记风格有多种:
    .  Point marker
    ,  Pixel marker
    o  Circle marker
    v  Triangle down marker 
    ^  Triangle up marker 
    <  Triangle left marker 
    >  Triangle right marker 
    1  Tripod down marker
    2  Tripod up marker
    3  Tripod left marker
    4  Tripod right marker
    s  Square marker
    p  Pentagon marker
    *  Star marker
    h  Hexagon marker
    H  Rotated hexagon D Diamond marker
    d  Thin diamond marker
    | Vertical line (vlinesymbol) marker
    _  Horizontal line (hline symbol) marker
    +  Plus marker
    x  Cross (x) marker
"""
import matplotlib as mpl
# 设置中文显示
#mpl.rcParams['font.sans-serif'] = ['SimHei']
#plt.scatter(x,y,c='r',marker="*")
#plt.xlabel("hello") 
#plt.ylabel(u"你个傻子")
#plt.title("test",fontsize=24)

data = np.random.randint(1,30,100)
from scipy.stats import norm
import seaborn as sns

# 正态分布
mu = 0
    
# 正确显示负数
mpl.rcParams['axes.unicode_minus']=False


#sigma = 1
#x = np.arange(-5, 5, 0.1)
#y = norm.pdf(x, 0, 1)
#plt.plot(x, y)
#plt.xlabel('x')
#plt.ylabel('density')
#plt.show()


#plt.hist2d([1,2,6,12,16],[10,90,8,70,6],[[1,2,3,4,5],[2,3,4,50,60]])
#data1 = np.random.normal(10,1.0,1000)
#plt.hist(data1, bins=15, color=sns.desaturate("red", .8), alpha=1,histtype='stepfilled')  
# bins 指的是直方图块数




#import numpy as np
#import matplotlib.pyplot as plt
#from matplotlib import cm
#from mpl_toolkits.mplot3d import Axes3D
#
#X = np.arange(-5, 5, 0.25)
#Y = np.arange(-5, 5, 0.25)
#X, Y = np.meshgrid(X, Y)
#R = np.sqrt(X**2 + Y**2)
#Z = np.sin(R)
#
#fig = plt.figure()
#ax = Axes3D(fig)
#ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis)




#plt.subplot(2,2,1)
#plt.subplot(2,2,2)
#plt.subplot(2,2,3)
#plt.subplot(2,2,4)
#plt.subplot(2,1,1)
#plt.subplot(3,3,9)
#plt.subplot(3,3,8)
#plt.subplot(3,3,7)
#plt.subplot(3,3,6)
#plt.subplot(3,3,5)
#plt.subplot(3,3,4)
#plt.subplot(3,3,3)
#plt.subplot(3,3,2)
#plt.subplot(3,3,1)
#plt.subplot(1,3,2)
#plt.title("first")
#plt.subplot(1,3,1)
#plt.title("second")


data3 = pd.read_csv(r"C:\Users\chase\Desktop\myhexun.csv",encoding='gbk')
#print(data3.values[0][0])
data2 = data3.T
x = data2.values[2]
y = data2.values[3]
#plt.plot(x,y,'r--')




x1 = data2.values[4]
plt.plot(x1,y)





































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值