逐行对比LLaMA2和LLaMA模型源代码

本文对比了Meta发布的LLaMA2与原始LLaMA模型的源代码,发现主要变化在于增加了一个repeat_kv函数,用于在多头注意力机制中处理键值头数不足的情况。这个函数可能支持分组查询注意力机制,减少计算和存储需求。在推理函数上,LLaMA2从仅输出最后一步概率改为输出每个位置的词汇概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

几个小时前(2023年7月18日),Meta发布了允许商用的开源模型LLaMA2。笔者逐行对比了LLaMA2模型源代码,和LLaMA相比,几乎没有改动,细节如下:

是否改动 LLaMA2 LLaMA
模型整体构架 Transformer Transformer
规范化函数 均方根规范化(RMSNorm) 均方根规范化(RMSNorm)
位置编码 复数形式的旋转位置编码(RoPE) 复数形式的旋转位置编码(RoPE)
激活函数 SiLU SiLU
注意力机制 略有改动 分组查询多头注意力机制 多头注意力机制
前馈函数 逐元素前馈函数 逐元素前馈函数
连接 残差连接 残差连接
掩码 因果掩码 因果掩码
推理 <
Langchain-Chatchat 是一个基于 LangChain 框架开发的中文对话系统,其主要目标是通过整合多种自然语言处理技术,实现对用户输入的理解与响应。该项目结合了大模型(如 LLM)、向量数据库、检索增强生成(RAG)等技术,构建了一个可扩展的对话式 AI 系统。 ### 项目结构分析 Langchain-Chatchat 的源代码通常分为以下几个核心模块: - **知识库管理**:支持将文档(如 PDF、TXT、Word 等)导入为向量形式,并存储在向量数据库中。这一过程依赖于嵌入模型(如 `text2vec` 或 `sentence-transformers`)进行文本编码[^1]。 - **检索模块**:使用 FAISS、Milvus 或其他向量搜索引擎进行高效相似度匹配,从而实现基于语义的问答检索。 - **对话接口层**:封装了与大模型交互的逻辑,包括调用本地部署的 LLM(如 ChatGLM、Llama 系列)或远程 API(如 OpenAI、阿里云百炼等)。 - **Web 前端界面**:提供可视化操作界面,支持用户上传文档、发起对话、查看历史记录等功能。 ### 核心类与函数解析 #### `KnowledgeBaseService` 该类负责知识库的增删改查操作,其核心方法包括: ```python class KnowledgeBaseService: def add_document(self, file_path: str): # 将文件内容读取并切分为文本块 texts = self._split_text(file_path) # 使用嵌入模型生成向量 vectors = self.embedding_model.encode(texts) # 存入向量数据库 self.vector_store.add_vectors(vectors, texts) def search(self, query: str, top_k: int = 5): # 查询最相似的 top_k 条结果 return self.vector_store.similarity_search(query, top_k) ``` #### `ChatEngine` 该类封装了对话引擎的核心流程,包括检索与生成: ```python class ChatEngine: def __init__(self, llm, knowledge_base): self.llm = llm self.knowledge_base = knowledge_base def respond(self, user_input: str): # 检索相关知识 retrieved_docs = self.knowledge_base.search(user_input) # 构建上下文提示词 context = "\n".join([doc.content for doc in retrieved_docs]) prompt = f"根据以下资料回答问题:\n{context}\n\n问题:{user_input}" # 调用大模型生成答案 return self.llm.generate(prompt) ``` ### 配置与部署 Langchain-Chatchat 支持多种部署方式,包括本地运行容器化部署。配置文件通常位于 `configs/` 目录下,包含模型路径、向量数据库连接信息、API 密钥等内容。例如: ```yaml # configs/settings.yaml model: name: chatglm path: /models/chatglm-6b vectorstore: type: faiss path: ./data/vectorstore embedding: model_name: text2vec-base-chinese path: /models/text2vec-base-chinese ``` 启动服务时可通过命令行参数指定配置文件: ```bash python app.py --config configs/settings.yaml ``` ### 开发建议 - **调试技巧**:建议使用 `pdb` 或 IDE 自带的调试工具逐行执行关键函数,观察变量变化。 - **性能优化**:对于大规模知识库场景,可以考虑引入分布式向量搜索方案(如 Milvus 或 Weaviate)提升检索效率。 - **模型替换**:若需更换大模型,只需继承 `LLM` 类并实现 `generate()` 方法即可适配新模型。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值