GAN·生成对抗网络——札记1

生成对抗网络(GAN)由生成器和判别器组成,通过博弈学习实现无监督学习。生成器尝试制造逼真的样本欺骗判别器,而判别器试图区分真实样本和生成样本。这种技术广泛应用于图像生成、科学和游戏领域。训练过程中,先优化判别器,再优化生成器,以达到使判别器难以区分真假样本的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成对抗网络(GAN)

 

Generative Adversarial Network
为了无监督学习提出的
伊恩·古德费洛等人于2014年提出

概念

是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。

组成

生成网络 Generator

 

deconvolutional neural network

生成网络从潜在空间(latent space)中随机取样作为输入,其输出结果需要尽量模仿训练集中的真实样本。

功能:产生模拟输出

目的:则要尽可能地欺骗判别网络

判别网络Discriminator

 

convolutional neural network

判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。

  • 判别器在这里是一种分类器,用于区分样本的真伪

功能:分辨输入数据是真实还是模拟的

目的:通过不断发现和反馈生成网络产生的模拟数据的不足,促进生成网络优化

最终目的:

使判别网络无法判断生成网络的输出结果是否真实,来达到生成以假乱真样本的目的

  • 生成器判别器与样本示意图

 

  • 注:图中的黑色虚线表示真实的样本的分布情况,蓝色虚线表示判别器判别概率的分布情况,绿色实线表示生成样本的分布。Z表示噪声, Z 到x 表示通过生成器之后的分布的映射情况。

使D判别器无论何种情况的识别率都趋于0.5

·假钞和警察关系  画家和鉴赏家 写作敌人念作朋友

应用

用于生成以假乱真的图片

时尚和广告——用于生成影片

科学

  • 改善天文图像

  • 三维物体模型

影像游戏

  • 影像游戏改造社区

 

如何训练

 

基本流程

 

要训练k次判别器,再训练生成器

Tips: 因为要先拥有一个好的判别器,使得能够教好地区分出真实样本和生成样本之后,才好更为准确地对生成器进行更新。

训练判别器

 

训练生成器

 

使判断器关于input的output值越大越好;使生成器的output与真实差距越来越小

 

各类GAN及VEN生成效果对比

传统VEN效果稳定但能力有限

GAN的效果range比较大,但可以获得更优的output

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值