✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(一)LEACH 协议的相关背景与基础理论
在无线传感器网络(WSN)蓬勃发展的当下,能源管理成为决定网络性能与寿命的关键要素。无线传感器网络通常由大量资源受限的传感器节点构成,这些节点负责感知环境信息、处理数据以及与其他节点或基站进行通信。由于节点的电池能量有限且更换困难,如何高效利用能源、延长网络生存时间成为亟待解决的核心问题。LEACH(Low-Energy Adaptive Clustering Hierarchy)作为一种经典的分簇路由协议,因其能有效平衡网络能耗而被广泛研究与应用。
分簇路由协议的基本思想是将网络中的节点划分为若干簇,每个簇选举出一个簇头节点。簇头节点负责收集簇内普通节点的数据,进行融合处理后转发给基站。通过减少数据传输量与传输距离,分簇协议能够显著降低网络能耗。LEACH 协议的运行过程分为簇头选举与数据传输两个阶段。在簇头选举阶段,节点根据预设的概率阈值决定是否成为簇头;在数据传输阶段,普通节点将数据发送给簇头,簇头进行数据融合后再向基站传输。
尽管 LEACH 协议在一定程度上均衡了网络能耗,但仍存在诸多不足。簇头节点随机选举机制导致簇头分布不均匀,部分区域可能出现过多或过少簇头,影响数据收集效率与能耗均衡性;簇头数量每轮随机确定,缺乏对最优簇头数的精准控制,使得网络性能不稳定;簇头选举未考虑节点剩余能量,能量较高的节点与能量较低的节点当选簇头的概率相同,加速了高能量节点的能量消耗,缩短了网络的稳定运行周期;簇头与基站通信采用单跳方式,未充分利用多跳通信的优势,增加了通信能耗,尤其在大规模网络中,这一问题更为突出。
深入剖析无线传感器网络的体系架构,其通常包括感知层、网络层与应用层。感知层由传感器节点构成,负责采集环境数据;网络层负责数据传输与路由管理,确保数据可靠传输至基站;应用层对收集的数据进行分析与处理,实现特定的应用功能。在节能策略方面,数据融合技术通过合并多个节点的数据,减少数据传输量,降低通信能耗;能量高效的路由算法则优化数据传输路径,减少传输距离与能耗;节点休眠与唤醒机制依据网络负载动态调整节点工作状态,降低能量浪费。
(二)LEACH-EN 协议的具体改进措施
针对 LEACH 协议的缺陷,提出了一种改进的 LEACH-EN 协议。
为实现簇头均匀分布,引入了网络区域划分策略。采用传统的九宫格方法,将整个网络区域划分为等面积的九个子区域,每个子区域内选举一个簇头节点。通过这种方式,确保簇头节点在空间上的均匀分布,避免了局部区域簇头密度过高或过低导致的能量浪费与数据收集不充分问题。在实际操作中,根据网络节点的地理坐标或预估位置信息,将节点划分到相应的子区域,然后在各子区域内独立进行簇头选举。
在控制簇头数量方面,基于压缩比的概念确定最优簇头数。通过大量理论分析与仿真实验,发现网络中存在一个最优簇头数量,使得数据融合效率与通信能耗达到最佳平衡。压缩比反映了数据融合过程中数据量的压缩程度,与簇头数量密切相关。设定合理的压缩比目标后,根据网络规模与节点密度,计算出与之对应的最优簇头数量,并在每个子区域内严格限制簇头数量为一个。这种基于压缩比的簇头数量控制方法,不仅确保了网络性能的稳定性,还提高了能量利用效率。
在簇头选举机制上,引入节点剩余能量作为关键因素。传统的 LEACH 协议中,每个节点当选簇头的概率相同,但这种 “公平性” 是表面的,实际上忽视了节点能量差异,导致能量快速耗尽。在 LEACH-EN 协议中,节点的选举概率与剩余能量正相关,剩余能量越高,当选簇头的概率越大。通过这种方式,充分利用高能量节点的能量优势,延长其使用寿命,同时避免低能量节点因频繁担任簇头而过早死亡,有效均衡了全网能量消耗。具体实现时,每个节点维护自身的能量状态信息,并在簇头选举阶段广播自身能量信息,其他节点根据接收到的能量信息计算每个节点的选举优先级。
针对簇头与基站通信问题,采用多跳通信策略。在 LEACH-EN 协议中,簇头节点不再直接与基站通信,而是将数据传递给距离基站较近的簇头节点,形成多跳通信路径。这种方式充分利用了网络中节点的空间分布特性,减少了远距离通信的能耗。在构建多跳通信路径时,综合考虑节点间的距离与能量状态,选择最优的中继节点,确保数据传输的可靠性和高效性。通过这种方式,不仅降低了通信能耗,还提高了网络的可扩展性,尤其在大规模网络中,优势更加明显。
(三)LEACH-EN 协议的仿真实验与结果分析
为了验证 LEACH-EN 协议的性能优势,采用 MATLAB 进行了详细的网络仿真实验,并与原始 LEACH 协议进行了对比分析。
在仿真实验中,构建了一个包含 100 个传感器节点的无线传感器网络模型,节点随机分布在 100m×100m 的正方形区域内,基站位于网络的一角。实验主要评估了网络的生存时间、节点死亡顺序、能耗均衡性等关键性能指标。
实验结果显示,LEACH-EN 协议在多个方面优于原始 LEACH 协议。在节点生存时间方面,LEACH-EN 协议明显延长了第一个节点死亡的时间,同时也推迟了最后一个节点死亡的时间,整个网络的生存周期得到显著延长。这是由于 LEACH-EN 协议通过优化簇头分布、控制簇头数量、考虑剩余能量以及采用多跳通信等措施,有效均衡了网络能耗,避免了能量过早耗尽。
在能耗均衡性方面,LEACH-EN 协议表现出色。通过记录每个节点在各个时间段的能量消耗情况,绘制能耗分布图发现,LEACH-EN 协议下节点的能量消耗更加均匀,避免了部分节点因过度消耗而提前失效,提高了网络的整体性能稳定性。在数据传输效率方面,多跳通信策略的采用减少了数据传输过程中的能量损失,提高了数据传输的成功率与实时性。
此外,通过对比不同协议下网络的数据吞吐量,发现 LEACH-EN 协议在保证能耗优化的同时,数据传输能力并未受到影响,甚至在一定程度上有所提升。这是由于簇头均匀分布与多跳通信路径的优化,减少了数据传输过程中的冲突与重传次数,提高了网络的通信效率。
%% 清空环境变量
clear;
clc;
%% 网络参数初始化
num_nodes = 100; % 节点数量
network_size = 100; % 网络区域大小(100m x 100m)
bs_location = [network_size/2, network_size*1.1]; % 基站位置(位于网络外部)
initial_energy = 1; % 节点初始能量(单位:焦耳)
num_rounds = 200; % 仿真轮数
% 节点位置随机生成(二维坐标)
node_locations = rand(num_nodes, 2) * network_size;
% 节点能量初始化
node_energies = initial_energy * ones(num_nodes, 1);
% 网络区域划分(九宫格)
grid_size = network_size / 3;
grid_centers = zeros(9, 2);
for i = 1:3
for j = 1:3
grid_index = (i-1)*3 + j;
grid_centers(grid_index, :) = [(i-1)*grid_size + grid_size/2, (j-1)*grid_size + grid_size/2];
end
end
%% LEACH-EN 协议仿真
% 记录每轮死亡节点数
dead_nodes_LEACH_EN = zeros(num_rounds, 1);
for round = 1:num_rounds
% 步骤 1:簇头选举(基于九宫格划分与剩余能量)
cluster_heads = zeros(num_nodes, 1); % 标记是否为簇头(1 表示簇头)
head_indices = zeros(9, 1); % 每个九宫格内的簇头索引
for grid = 1:9
% 确定属于当前九宫格的节点
grid_nodes = find( ...
node_locations(:,1) >= (mod(grid-1,3))*grid_size & ...
node_locations(:,1) < (mod(grid-1,3)+1)*grid_size & ...
node_locations(:,2) >= ceil(grid/3-1)*grid_size & ...
node_locations(:,2) < ceil(grid/3)*grid_size ...
);
if ~isempty(grid_nodes)
% 在当前九宫格内选择簇头(基于剩余能量)
grid_energies = node_energies(grid_nodes);
[~, max_energy_idx] = max(grid_energies);
selected_head = grid_nodes(max_energy_idx);
cluster_heads(selected_head) = 1;
head_indices(grid) = selected_head;
end
end
% 步骤 2:簇内通信与数据融合
for i = 1:num_nodes
if cluster_heads(i) == 1
% 簇头节点:收集簇内数据并融合
% 计算簇内节点到簇头的距离
cluster_members = find( ...
node_locations(:,1) >= (mod(find(head_indices == i)-1,3))*grid_size & ...
node_locations(:,1) < (mod(find(head_indices == i)-1,3)+1)*grid_size & ...
node_locations(:,2) >= ceil(find(head_indices == i)/3-1)*grid_size & ...
node_locations(:,2) < ceil(find(head_indices == i)/3)*grid_size ...
);
cluster_members = setdiff(cluster_members, i); % 排除簇头自身
% 假设数据融合消耗固定能量
fusion_energy = 0.1 * length(cluster_members);
node_energies(i) = node_energies(i) - fusion_energy;
% 簇头节点向基站发送融合后的数据(多跳通信)
% 简化处理:假设簇头直接发送到基站,实际应实现多跳逻辑
transmission_distance = norm(node_locations(i,:) - bs_location);
transmission_energy = 0.001 * transmission_distance^2; % 简化的能量损耗模型
node_energies(i) = node_energies(i) - transmission_energy;
else
% 普通节点:发送数据到簇头
% 查找最近的簇头
[min_dist, nearest_head] = min(pdist2(node_locations(i,:), node_locations(cluster_heads == 1,:)));
head_idx = find(cluster_heads == 1, 1, 'first'); % 简化:假设簇头已知
% 发送数据消耗能量
transmission_distance = min_dist;
transmission_energy = 0.001 * transmission_distance^2; % 简化的能量损耗模型
node_energies(i) = node_energies(i) - transmission_energy;
end
% 检查节点是否死亡(能量耗尽)
if node_energies(i) <= 0
dead_nodes_LEACH_EN(round) = dead_nodes_LEACH_EN(round) + 1;
node_energies(i) = 0; % 标记为死亡
end
end
% 显示当前轮次簇头分布
figure(1);
clf;
scatter(node_locations(:,1), node_locations(:,2), 100, cluster_heads, 'filled');
colorbar;
title(['LEACH-EN 第 ' num2str(round) ' 轮簇头分布']);
xlabel('X 坐标(米)');
ylabel('Y 坐标(米)');
drawnow;
% 显示当前轮次节点能量状态
figure(2);
clf;
scatter(node_locations(:,1), node_locations(:,2), 100, node_energies, 'filled');
colorbar;
title(['LEACH-EN 第 ' num2str(round) ' 轮节点能量状态']);
xlabel('X 坐标(米)');
ylabel('Y 坐标(米)');
drawnow;
end
%% 原始 LEACH 协议仿真(对比)
% 节点能量重置
node_energies_LEACH = initial_energy * ones(num_nodes, 1);
dead_nodes_LEACH = zeros(num_rounds, 1);
for round = 1:num_rounds
% 步骤 1:簇头选举(原始 LEACH)
cluster_heads_LEACH = zeros(num_nodes, 1);
% 简化处理:随机选择 10% 的节点作为簇头
num_heads = round(num_nodes * 0.1);
head_candidates = randperm(num_nodes, num_heads);
cluster_heads_LEACH(head_candidates) = 1;
% 步骤 2:簇内通信与数据融合
for i = 1:num_nodes
if cluster_heads_LEACH(i) == 1
% 簇头节点:收集簇内数据并融合
% 假设簇内节点随机分布,简化处理
cluster_members = setdiff(find(pdist2(node_locations(i,:), node_locations) <= grid_size), i);
% 数据融合消耗能量
fusion_energy = 0.1 * length(cluster_members);
node_energies_LEACH(i) = node_energies_LEACH(i) - fusion_energy;
% 簇头直接与基站通信(单跳)
transmission_distance = norm(node_locations(i,:) - bs_location);
transmission_energy = 0.001 * transmission_distance^2;
node_energies_LEACH(i) = node_energies_LEACH(i) - transmission_energy;
else
% 普通节点:发送数据到簇头
% 查找最近的簇头
if any(cluster_heads_LEACH)
[min_dist, nearest_head] = min(pdist2(node_locations(i,:), node_locations(cluster_heads_LEACH == 1,:)));
head_idx = find(cluster_heads_LEACH == 1, nearest_head);
% 发送数据消耗能量
transmission_distance = min_dist;
transmission_energy = 0.001 * transmission_distance^2;
node_energies_LEACH(i) = node_energies_LEACH(i) - transmission_energy;
end
end
% 检查节点是否死亡
if node_energies_LEACH(i) <= 0
dead_nodes_LEACH(round) = dead_nodes_LEACH(round) + 1;
node_energies_LEACH(i) = 0;
end
end
% 显示当前轮次簇头分布(原始 LEACH)
figure(3);
clf;
scatter(node_locations(:,1), node_locations(:,2), 100, cluster_heads_LEACH, 'filled');
colorbar;
title(['LEACH 第 ' num2str(round) ' 轮簇头分布']);
xlabel('X 坐标(米)');
ylabel('Y 坐标(米)');
drawnow;
% 显示当前轮次节点能量状态(原始 LEACH)
figure(4);
clf;
scatter(node_locations(:,1), node_locations(:,2), 100, node_energies_LEACH, 'filled');
colorbar;
title(['LEACH 第 ' num2str(round) ' 轮节点能量状态']);
xlabel('X 坐标(米)');
ylabel('Y 坐标(米)');
drawnow;
end
%% 性能对比分析
% 绘制节点死亡情况对比图
figure;
plot(1:num_rounds, cumsum(dead_nodes_LEACH_EN), '-r', 'LineWidth', 2);
hold on;
plot(1:num_rounds, cumsum(dead_nodes_LEACH), '-b--', 'LineWidth', 2);
xlabel('轮次');
ylabel('累积死亡节点数');
title('LEACH-EN 与 LEACH 协议节点死亡情况对比');
legend('LEACH-EN', 'LEACH');
grid on;
% 绘制能耗均衡性对比图
figure;
histogram(node_energies, 20, 'Normalization', 'probability');
hold on;
histogram(node_energies_LEACH, 20, 'Normalization', 'probability', 'FaceColor', 'g');
xlabel('节点剩余能量(焦耳)');
ylabel('节点比例');
title('LEACH-EN 与 LEACH 协议能耗均衡性对比');
legend('LEACH-EN', 'LEACH');
grid on;
如有问题,可以直接沟通
👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇