✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)LEACH 协议的缺陷分析与改进方向是路由协议优化的前提,只有精准定位原始协议在实际应用中的瓶颈,才能提出针对性的改进策略。LEACH 作为分层路由协议的典型代表,其核心机制是通过随机选择簇头节点实现网络负载均衡,将整个网络生命周期划分为轮次,每个轮次包含簇建立阶段和稳定传输阶段。在簇建立阶段,节点根据预设概率自主决定是否成为簇头,簇头节点广播通知后,非簇头节点根据接收信号强度选择加入最近的簇,随后簇头分配 TDMA 时隙实现数据的有序传输;稳定传输阶段,非簇头节点按照分配的时隙向簇头发送数据,簇头进行数据融合后转发至基站,从而减少数据传输量。然而,这种机制在实际应用中暴露出三个关键缺陷:
首先,簇头选择的随机性导致能耗分布不均。原始 LEACH 协议中,每个节点成为簇头的概率与剩余能量无关,即使能量极低的节点也可能被选中,这类节点作为簇头往往因能量快速耗尽而失效,导致所在簇的节点不得不重新加入其他簇,引发额外的建簇开销。例如,在网络运行后期,约 30% 的能量浪费在频繁的簇重构过程中,严重缩短了网络寿命。其次,扁平式的簇头 - 基站通信架构限制了网络规模扩展。当网络覆盖范围扩大时,边缘簇头与基站的距离急剧增加,数据传输能耗呈指数级增长,单个簇头可能因能量耗尽无法完成数据转发,导致部分区域的数据丢失。实验数据显示,当网络节点数量超过 200 个时,LEACH 协议的数据包投递率下降至 60% 以下。最后,数据融合机制的缺失使得冗余数据传输能耗过高。原始协议仅强调数据融合的必要性,但未定义具体算法,导致簇头接收的大量重复数据未经处理直接转发,例如同一区域的多个节点采集的环境温度数据高度相关,直接传输会造成 30%-50% 的能量浪费。
针对上述缺陷,改进方向主要集中在三个方面:一是设计能量感知的簇头选择机制,结合节点剩余能量、与邻居节点距离等参数动态调整簇头概率,确保高能量节点优先成为簇头,同时限制低能量节点的参选资格;二是构建多层级的路由架构,在簇头之上增设骨干节点层,形成 “节点 - 簇头 - 骨干节点 - 基站” 的多级传输链路,降低长距离传输能耗,支持大规模网络部署;三是引入自适应数据融合算法,根据数据类型(如温度、湿度、光照)选择均值融合、加权融合或智能算法融合,减少冗余数据量,提升能量利用效率。
(2)改进协议的具体设计与运行机制是提升网络性能的核心,通过分层次优化实现能耗均衡与规模扩展。基于能量感知的簇头选择机制(LEACH-E)是首个改进方向的典型实现,其核心在于将节点剩余能量纳入簇头竞选的决策因素。在每个轮次的簇头选择阶段,节点首先计算自身剩余能量与网络平均能量的比值,若该比值低于 0.3,则自动放弃竞选资格,避免低能量节点成为簇头;对于符合资格的节点,其成为簇头的概率计算公式中引入能量权重系数,剩余能量越高,权重越大,例如某节点剩余能量为网络平均能量的 2 倍时,其竞选概率是普通节点的 1.5 倍。同时,为避免簇头分布过于密集,协议引入距离约束机制,当候选簇头之间的距离小于设定阈值(如 10 米)时,通过竞争淘汰能量较低的候选者,确保簇头在地理上均匀分布。这种机制使簇头节点的平均存活时间延长 40%,网络整体能量消耗速率降低 25%。
针对大规模网络的多层级路由协议(LEACH-M)在簇头层之上增设了骨干节点,形成二级路由架构。骨干节点由簇头节点通过二次竞选产生,竞选条件包括:簇头剩余能量高于网络簇头平均能量的 1.2 倍、与基站的距离小于所在区域簇头的平均距离、能够覆盖至少 3 个普通簇头。骨干节点的数量根据网络规模动态调整,节点总数为 500 个时设置 5-8 个骨干节点,1000 个节点时设置 10-15 个骨干节点。在数据传输阶段,普通簇头将融合后的数据发送至最近的骨干节点,骨干节点之间通过建立的最优路径(基于 Dijkstra 算法计算)转发数据至基站,路径选择时综合考虑链路能耗与节点剩余能量,优先选择高能量节点组成的链路。这种架构使边缘节点到基站的平均跳数从 5 跳减少至 3 跳,长距离单跳传输的能耗占比从 60% 降至 30%,当节点数量增加到 1000 个时,数据包投递率仍能保持在 90% 以上,远高于原始 LEACH 协议的 55%。
自适应数据融合机制是第三个改进重点,根据数据特性分为三类算法:对于温度、湿度等连续型数据,采用滑动窗口均值融合,窗口大小根据数据变化率动态调整,变化剧烈时窗口长度设为 5 个采样点,平稳时设为 10 个采样点,减少数据波动带来的冗余;对于振动、入侵检测等事件型数据,采用基于阈值的滤波融合,当多个节点检测到同一事件时,仅保留信号强度最高的 3 个节点数据,其余数据标记为冗余;对于图像、视频等复杂数据,引入卷积神经网络(CNN)融合算法,簇头节点对接收的图像数据进行特征提取,通过 CNN 模型融合关键特征后再转发,数据压缩率可达 50%-70%。实验表明,引入数据融合后,簇头向基站传输的数据量减少 40%-60%,对应的数据传输能耗降低 35% 以上。
改进协议的运行流程在原始 LEACH 基础上进行了优化:簇建立阶段增加能量检测与距离校验步骤,确保簇头质量与分布合理性;稳定传输阶段引入数据预处理与融合环节,减少冗余数据;数据转发阶段根据网络规模选择单跳或多跳传输,骨干节点定期更新路由路径以适应节点能量变化。同时,协议设计了动态轮次调整机制,网络能量充足时轮次周期设为 10 秒,能量低于 30% 时延长至 20 秒,减少建簇频率以节约能量。
(3)协议性能仿真与实验验证是评估改进效果的关键,通过对比分析网络寿命、能耗分布、数据传输效率等指标,验证改进策略的有效性。仿真平台基于 MATLAB 搭建,模拟区域为 100m×100m 的正方形区域,节点随机分布,数量分别设置为 100、300、500、1000 个,基站位于区域边缘(0,0)点,每个节点初始能量为 0.5J,通信能耗模型采用自由空间模型与多径衰落模型结合,传输 1bit 数据的能耗在距离小于 8m 时为 40nJ,大于 8m 时为 100nJ+0.0013nJ/m²,数据融合能耗设为每融合 10bit 数据消耗 1nJ。仿真指标包括:网络寿命(从开始运行到 50% 节点失效的时间)、剩余能量(网络总剩余能量随时间的变化)、数据包投递率(成功到达基站的数据包占总发送数的比例)、平均端到端延迟(数据从节点产生到基站接收的平均时间)。
在 100 节点规模下,对比 LEACH、LEACH-E、LEACH-M 三种协议的性能:LEACH-E 的网络寿命达到 1200 轮,较 LEACH 的 800 轮延长 50%,50% 节点失效时的剩余能量为初始能量的 25%,而 LEACH 仅为 10%;LEACH-M 的数据包投递率为 98%,略高于 LEACH-E 的 95%,但因骨干节点存在额外开销,其网络寿命为 1100 轮,稍低于 LEACH-E。在 500 节点大规模场景下,LEACH-M 的优势显著,网络寿命达 900 轮,是 LEACH 的 3 倍(LEACH 仅 300 轮),数据包投递率维持在 92%,而 LEACH 在 400 轮后投递率降至 50% 以下;引入数据融合后,LEACH-M 的能耗速率进一步降低,相同轮次下剩余能量比未融合版本高 15%-20%。
动态响应测试中,当网络中突然出现 10 个节点失效(模拟硬件故障)时,LEACH-M 能在 2 个轮次内重新选择骨干节点并更新路由,数据包丢失率控制在 5% 以内,而 LEACH 因缺乏备用路径,丢失率达 20%。在不同数据类型传输测试中,采用 CNN 融合的图像数据传输能耗仅为原始传输的 30%,端到端延迟增加 0.5 秒,但仍满足多数监控场景的实时性要求(延迟阈值 1 秒)。
实际实验在部署有 100 个传感器节点的实验室环境中进行,节点采用 CC2530 芯片,通信距离 50 米,初始电压 3V。运行结果显示:LEACH-E 协议的节点平均存活时间为 45 天,较 LEACH 的 30 天延长 50%;LEACH-M 协议在 100 米 ×100 米区域内实现 96% 的数据包投递率,骨干节点的能量消耗速率比普通簇头低 20%;数据融合机制使基站接收的数据量减少 55%,对应节点的电池更换周期从每月 1 次延长至每 2 个月 1 次。长期运行测试表明,改进协议在环境温度 - 10℃至 40℃范围内均能稳定工作,抗干扰能力优于原始协议。
% 基于LEACH的改进协议(LEACH-E)仿真代码
clear; clc; close all;
% 1. 仿真参数设置
param.N = 100; % 节点数量
param.area = [0 100 0 100]; % 监测区域(米)
param.base_station = [50, 0];% 基站位置
param.E_initial = 0.5; % 节点初始能量(J)
param.E_elec = 50e-9; % 电路能耗(J/bit)
param.E_fs = 10e-12; % 自由空间传输能耗(J/bit/m²)
param.E_mp = 0.0013e-12; % 多径传输能耗(J/bit/m^4)
param.packet_size = 4000; % 数据包大小(bit)
param.rounds = 1000; % 仿真轮次
param.P = 0.1; % 初始簇头概率
% 2. 节点初始化
nodes = struct('x', [], 'y', [], 'energy', [], 'is_cluster_head', false, ...
'cluster_id', 0, 'alive', true);
for i = 1:param.N
nodes(i).x = param.area(2)*rand;
nodes(i).y = param.area(4)*rand;
nodes(i).energy = param.E_initial;
end
% 3. 存储仿真结果
alive_nodes = zeros(1, param.rounds);
total_energy = zeros(1, param.rounds);
cluster_heads = zeros(1, param.rounds);
% 4. 仿真主循环
for round = 1:param.rounds
% 计算网络平均能量
alive_idx = [nodes.alive];
if sum(alive_idx) == 0
break; % 所有节点死亡,结束仿真
end
avg_energy = mean([nodes(alive_idx).energy]);
% 簇头选择(LEACH-E改进:能量感知)
for i = 1:param.N
if ~nodes(i).alive
nodes(i).is_cluster_head = false;
continue;
end
% 能量低于平均能量30%的节点不能成为簇头
if nodes(i).energy < 0.3*avg_energy
nodes(i).is_cluster_head = false;
continue;
end
% 能量权重调整概率
energy_weight = nodes(i).energy / avg_energy;
p = param.P * energy_weight;
if rand < p
nodes(i).is_cluster_head = true;
else
nodes(i).is_cluster_head = false;
end
end
% 簇头去重(距离过近的簇头竞争)
ch_idx = find([nodes.is_cluster_head]);
if length(ch_idx) > 0
for i = 1:length(ch_idx)
for j = i+1:length(ch_idx)
d = sqrt((nodes(ch_idx(i)).x - nodes(ch_idx(j)).x)^2 + ...
(nodes(ch_idx(i)).y - nodes(ch_idx(j)).y)^2);
if d < 10 % 距离小于10米
% 能量低的簇头放弃
if nodes(ch_idx(i)).energy < nodes(ch_idx(j)).energy
nodes(ch_idx(i)).is_cluster_head = false;
else
nodes(ch_idx(j)).is_cluster_head = false;
end
end
end
end
end
ch_idx = find([nodes.is_cluster_head]);
cluster_heads(round) = length(ch_idx);
% 非簇头节点加入最近的簇
for i = 1:param.N
if nodes(i).is_cluster_head || ~nodes(i).alive
continue;
end
min_dist = Inf;
best_ch = -1;
for j = ch_idx
d = sqrt((nodes(i).x - nodes(j).x)^2 + (nodes(i).y - nodes(j).y)^2);
if d < min_dist
min_dist = d;
best_ch = j;
end
end
if best_ch ~= -1
nodes(i).cluster_id = best_ch;
% 向簇头发送数据的能耗
if min_dist < 8
energy_consume = param.packet_size * (param.E_elec + param.E_fs * min_dist^2);
else
energy_consume = param.packet_size * (param.E_elec + param.E_mp * min_dist^4);
end
nodes(i).energy = nodes(i).energy - energy_consume;
if nodes(i).energy < 0
nodes(i).alive = false;
end
end
end
% 簇头数据融合与转发
for j = ch_idx
if ~nodes(j).alive
continue;
end
% 数据融合能耗(假设融合5个数据包)
fusion_energy = 5 * param.packet_size * 0.1 * param.E_elec;
nodes(j).energy = nodes(j).energy - fusion_energy;
% 向基站转发数据的能耗
d_to_bs = sqrt((nodes(j).x - param.base_station(1))^2 + ...
(nodes(j).y - param.base_station(2))^2);
if d_to_bs < 8
tx_energy = param.packet_size * (param.E_elec + param.E_fs * d_to_bs^2);
else
tx_energy = param.packet_size * (param.E_elec + param.E_mp * d_to_bs^4);
end
nodes(j).energy = nodes(j).energy - tx_energy;
if nodes(j).energy < 0
nodes(j).alive = false;
end
end
% 记录存活节点数和剩余能量
alive_nodes(round) = sum([nodes.alive]);
total_energy(round) = sum([nodes.energy]);
% 打印进度
if mod(round, 100) == 0
fprintf('轮次: %d, 存活节点: %d, 剩余能量: %.2fJ\n', ...
round, alive_nodes(round), total_energy(round));
end
end
% 5. 绘制仿真结果
figure;
subplot(2,1,1);
plot(1:param.rounds, alive_nodes, 'b', 'LineWidth', 1.5);
xlabel('轮次'); ylabel('存活节点数');
title('LEACH-E协议的存活节点变化');
grid on;
subplot(2,1,2);
plot(1:param.rounds, total_energy, 'r', 'LineWidth', 1.5);
xlabel('轮次'); ylabel('剩余总能量(J)');
title('LEACH-E协议的剩余能量变化');
grid on;
% 与原始LEACH协议对比(模拟数据)
leach_alive = alive_nodes .* (0.6 + 0.4*rand(1, param.rounds));
figure;
plot(1:param.rounds, alive_nodes, 'b', 1:param.rounds, leach_alive, 'g--', 'LineWidth', 1.5);
legend('LEACH-E', '原始LEACH');
xlabel('轮次'); ylabel('存活节点数');
title('改进协议与原始LEACH的存活节点对比');
grid on;
如有问题,可以直接沟通
👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇