神经网络与图处理算法的优化探索
1. 多层感知器神经网络与误差反向传播算法
多层感知器神经网络(MLPNN)是当今重要的机器学习工具,在复杂分类问题、函数估计和预测计算任务等多个领域广泛应用。它是具有非线性激活函数的前馈多层网络,学习过程为有监督学习,常使用基于梯度的算法,尤其是误差反向传播(EBP)算法来训练网络。
EBP算法是一种梯度下降方法,用于最小化网络计算输出误差的平方和。其学习过程是在均方误差(MSE)函数的负梯度方向上进行逐步迭代的权重修正。误差通过期望输出值与最后一层输出值的差值计算得出,并反向传播到前一层的神经元。影响MLPNN性能的参数众多,包括初始化、学习率选择、网络拓扑结构、隐藏层数量、神经元数量、训练数据量、收敛速度和激活函数类型等。
然而,在处理大规模和异构数据(如视频数据分类)时,MLPNN存在两个基本问题:一是收敛速度慢,二是大规模数据下网络规模大,且更新和维护权重时存在内存不足的问题,这可能导致算法的时间和空间复杂度极高,甚至无法实现网络。
2. MLPNN与EBP算法详解
MLPNN通常包含输入层、隐藏层和输出层,每层由一组神经元组成,神经元之间通过可调节的加权链接连接。使用EBP算法训练网络时,学习算法通过将计算得到的误差从输出层反向传播到前一层来调整权重,逐步减少误差。
若({X_i, D_i} {i = 1}^{h})为网络的训练集((X_i = [x {i1}, x_{i2}, …, x_{in}]^T)为输入模式,(D_i)为期望输出),在EBP算法中,输出层神经元的误差计算如下:
(e_{c}^{i}(n)=D_i(n)-Y_c(n))