matlab中图像空间域的滤波和卷积的区别

本文深入探讨了图像处理中的滤波(相关)与卷积的差异,通过具体实例展示了两种操作的不同之处,强调了基础知识的重要性,并介绍了MATLAB中实现这两种操作的函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感觉基础没有学好,知识的高楼是建不起来的,即使建起来也是危楼。

之前没有细致的理解两个区别的时候一直觉得两个差不多就是一个东西,至少在算的过程差不多,现在细致理解起来还是有挺大区别的。

1、滤波(filte)就是冈萨雷斯的数字图像处理书中的“相关(correlation)”,这里滤波和卷积的核(掩膜)都用一个g:

111
000
-1-1-1

源图像为im:

123456
234567
345678
456789
000000
5678910

不论滤波还是卷积操作,都需要对源图像填0,

00000000
01234560
02345670
03456780
04567890
00000000
056789100
00000000
111
000
-1-1-1

红色的点直接对应相乘再相加,可以得到滤波后图像的第一个点值为-5,然后Z字形划过生成滤波图像:

-5-9-12-15-18-13
-4-6-6-6-6-4
-4-6-6-6-6-4
71215182115
-2-3-3-3-3-2
000000

2、卷积操作,其实我一直也不理解为什要有卷积这个东西,因为卷积就是把核(掩膜)g翻转个180°,就是把它上下颠倒一下再来进行滤波操作的过程。

翻转的核:

-1-1-1
000
111

蓝色的点和前面蓝色的点相乘再相加,就得到卷积后图像的最后一个点0。

最后matlab中滤波函数是imfilter()、卷积函数是conv2()。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值