opencv: cv2.boxPoints返回值顺序

opencv: cv2.boxPoints返回值顺序是啥

1.0.引言:

  • 想学习一下cv2.boxPoints(),该方法可以计算带有旋转的矩形框坐标,想知道返回四个点的具体顺序
  • 找了好久,就是没有找到一个可以运行的例子,来验证
  • 自己画了一个图,可以简单运行,方便看

2.0.cv2.boxPoint():

  • boxPoints返回四个点顺序:右下→左下→左上→右上

实例demo如下: 

2.1.效果图如下:

 

 

### OpenCV 中 `cv2.boxPoints()` 的源码实现 `cv2.boxPoints()` 是 OpenCV 提供的一个用于计算旋转矩形四个顶点坐标的函数。该函数的作用是从一个表示最小外接矩形的对象 (`RotatedRect`) 计算出其四个角点坐标[^2]。 #### 函数定义 以下是 Python 接口中的 `cv2.boxPoints()` 使用方式: ```python import cv2 import numpy as np # 假设我们有一个 RotatedRect 对象 (中心点、宽高、角度) rect = ((100, 50), (80, 30), 45) # 调用 boxPoints 获取四个顶点 box_points = cv2.boxPoints(rect) print(box_points) ``` 虽然在 Python 中调用了此函数,但实际上它的底层实现是由 C++ 编写的,并通过封装提供给 Python 用户使用。下面是基于 OpenCV 官方文档和代码库推测的可能实现逻辑: --- #### 底层实现原理 `cv2.boxPoints()` 的核心功能可以分解为以下几个部分: 1. **输入参数解析** 输入是一个 `RotatedRect` 结构体,它由三个主要属性组成: - `(cx, cy)` 表示矩形的中心点坐标。 - `(width, height)` 表示矩形的宽度和高度。 - `angle` 表示矩形相对于水平轴的角度(单位为度数)。 2. **矩阵变换** 利用几何学知识,将矩形的边框映射到实际图像空间中。具体来说,先构建标准矩形的四个顶点位置,再应用仿射变换将其旋转并平移到指定的位置。 3. **返回结果** 返回的是一个形状为 `(4, 2)` 的 NumPy 数组,其中每一行代表一个顶点的 `[x, y]` 坐标。 --- #### 源码分析 以下是 OpenCV C++ 源码的核心片段模拟版本(伪代码形式),展示了其实现细节: ```cpp #include <opencv2/core.hpp> #include <cmath> void boxPoints(const cv::RotatedRect& rrect, std::vector<cv::Point2f>& points) { float angle_rad = CV_PI * rrect.angle / 180; // 将角度转换为弧度制 float width_half = rrect.size.width / 2; float height_half = rrect.size.height / 2; // 构建初始矩形的四个顶点 std::vector<cv::Point2f> src_points = { {-width_half, -height_half}, {+width_half, -height_half}, {+width_half, +height_half}, {-width_half, +height_half} }; // 初始化目标点容器 points.clear(); for (const auto& p : src_points) { // 旋转变换公式 float x_rotated = cos(angle_rad) * p.x - sin(angle_rad) * p.y; float y_rotated = sin(angle_rad) * p.x + cos(angle_rad) * p.y; // 平移至中心点 cv::Point2f transformed_point(rrect.center.x + x_rotated, rrect.center.y + y_rotated); points.push_back(transformed_point); } } ``` 上述代码实现了以下操作: - 首先将矩形标准化为其原点位于 `(0, 0)` 处的标准状态; - 然后利用三角函数完成旋转操作; - 最后再将旋转后的点位偏移到真实世界的空间中。 Python 绑定会进一步对该接口进行封装以便于调用。 --- #### 总结 尽管无法直接查看 Python 版本的具体绑定代码,但可以通过以上推导理解其内部机制。如果需要更深入的研究,建议查阅 OpenCV 的官方 GitHub 仓库或相关模块文件夹下的 `.h/.cpp` 文件来获取完整的实现详情[^3]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值