- 博客(22)
- 收藏
- 关注
原创 【MPC】实战:基于MPC的车辆自适应巡航控制 (ACC) 系统设计
ACC 简介:车辆自适应巡航控制系统(Adaptive Cruise Control, ACC)是一种智能驾驶辅助技术,通过雷达或摄像头实时监测前方路况,自动调整车速以保持安全行驶。当前方无车辆时,ACC 会按照驾驶员设定的目标车速进行定速巡航,减少驾驶疲劳;当检测到前方有车辆时,系统会自动调整车速,保持预设的安全车距,并在必要时减速甚至制动,确保行车安全。
2025-06-25 16:56:42
767
原创 【MPC】模型预测控制笔记 (7):非线性MPC
致谢【模型预测控制(2022春)lecture 5-1 Implementing MPC in MATLAB】
2025-06-25 16:54:09
703
原创 【MPC】模型预测控制笔记 (6):不确定模型的鲁棒MPC
致谢 【模型预测控制(2022春)lecture 4-2 Robust MPC】假设系统的真实模型为:xk+1=Axk+B(uk+δ1(xk,uk))+δ2(xk)(1)x_{k+1} = Ax_k + B(u_k + \delta_1(x_k, u_k)) + \delta_2(x_k) \tag{1}xk+1=Axk+B(uk+δ1(xk,uk))+δ2(xk)(1)其中 δ1(xk,uk)\delta_1(x_k, u_k)δ1(xk,uk) 和 δ2(xk)\delta
2025-06-22 19:50:55
741
原创 【MPC】模型预测控制笔记 (5):抗干扰鲁棒MPC
致谢【模型预测控制(2022春)lecture 4-1 Robust MPC】xk1AxkBukDwk(1)xk1AxkBukDwk1其中,xk∈Rnxk∈Rn是系统状态,uk∈Rpuk∈Rp是系统的输入,uk∈Uuk∈Uwkw_kwk是有界的干扰.针对以上系统,由于干扰是无法预计的,故只能通过名义系统来设计名义MPC,
2025-06-22 19:48:09
1097
原创 【MPC】模型预测控制笔记 (4):约束输出反馈MPC
致谢 【模型预测控制(2022春)lecture 3-2 Output feedback MPC】本文需要是使用先前博客的知识,控制器求解参考【MPC】模型预测控制笔记 (2):约束MPC 、观测器设计参考【MPC】模型预测控制笔记 (3):无约束输出反馈MPC以下内容针对系统 (1) 展开:xk+1=Axk+Bukyk=Cxk(1)\begin{align*}x_{k+1} &= Ax_k + Bu_k \\y_k &= Cx_k\end{align*} \tag{1}xk+1yk
2025-06-18 22:55:35
649
原创 【MPC】模型预测控制笔记 (3):无约束输出反馈MPC
致谢【模型预测控制(2022春)lecture 3-1 Output feedback MPC】
2025-06-15 23:19:24
705
原创 【MPC】模型预测控制笔记 (2):约束MPC
由上一节可以看到,MPC是通过优化代价函数来求解最优控制序列,这一般是通过凸优化来进行的。凸优化问题已有高效的算法来进行求解,我们确保构建的优化问题是凸优化即可。致谢 【模型预测控制(2022春)lecture 2-1 Constrained MPC】、【模型预测控制(2022春)lecture 2-2 Constrained MPC】 凸函数定义:设 CCC 是非空凸集,fff 是定义在 DDD 上的函数,对任意 x1,x2∈Cx_1, x_2 \in Cx1,x2∈C,λ∈(0, 1)\lamb
2025-06-13 17:08:02
965
原创 【MPC】模型预测控制笔记 (1):无约束MPC
本文是 模型预测控制(2022春)lecture 1-1 Unconstrained MPC 的学习笔记,非常感谢诸兵老师的精彩课程。针对离散时不变线性系统:xk+1=Axk+Buk(1)x_{k+1}=Ax_k+Bu_k \tag{1}xk+1=Axk+Buk(1)xkx_kxk为系统状态,uku_kuk为系统输入。MPC需要分析模型预测的状态,将在 kkk 时刻预测未来第 iii 步的状体记为 x(i∣k)x_{(i|k)}x(i∣k),对应MPC在 kkk 时刻优化得到的第 iii
2025-06-09 15:20:07
1001
原创 基于LQR和前馈控制的自动驾驶控制算法(2.1):离散LQR原理
本文通关动态规划的思路推导离散LQR的求解方法,本文思路参考离散LQR黎卡提方程推导。同时也可通关拉格朗日乘子法推导,可参考【基础】自动驾驶控制算法第五讲 连续方程的离散化与离散LQR原理。
2025-05-21 14:08:20
966
原创 【C++】栈和队列基础语法
栈和队列被称为 “容器适配器”,其中如vector、list、map等为 “容器”,容器适配器即在容器的基础上定义了特定的接口。栈和队列特点分别为:数据先入后出和先入先出。栈的一些应用:(1)撤销操作,存储操作历史以便撤销(2)浏览器历史:前进后退功能使用栈结构实现队列的一些应用:(1)任务调度,操作系统使用队列管理进程和线程的执行顺序(2)缓冲处理,处理数据流时的缓冲(如视频流)以下为语法基础,假设已默认使用std命名空间( using namespace std;
2025-04-06 14:16:31
272
原创 【C++】类基础
class className{ // 自定义类名Access specifiers: // 访问修饰符: private/public/protected// 变量Member functions(){} // 方法// 变量和方法统称为成员。
2025-03-19 15:07:45
766
原创 基于LQR和前馈控制的自动驾驶控制算法(扩展2):四轮转向路径跟踪控制器设计
将系统:[e1e˙1e2e˙2]˙=[01000Cαf+Cαrmvx−Caf+CarmaCαf−bCαrmvx00010aCαf−bCαrIzvx−aCαf−bCαrIza2Cαf+b2CαrIzvx][e1e˙1e2e˙2]+[00−Cαfm−Cαrm00−aCαfIzbCαrIz][δfδr]+[0−vx+aCaf−bCarm vx0a2Caf+b2CarIz vx]θ˙r\dot{\begin{bmatrix} e_1 \\ \dot{e}_1 \\ e_2\\ \dot{e}_2 \end{bm
2025-02-18 23:16:05
910
原创 基于LQR和前馈控制的自动驾驶控制算法(3):离散轨迹的误差计算与预瞄
本节内容完全参考【基础】自动驾驶控制算法第七讲 离散规划轨迹的误差计算_哔哩哔哩_bilibilixyvxvyψ˙ψ¨xyvxvyψ˙ψ¨xryrθrkrxryrθrkr其中kr1Rk_r = 1/Rkr1/R为曲率。在第一节推导的动力学模型中,计算的是车辆质心位置PPP与在参考轨迹上的投影点PrP_rPr,满足PPrPP_rPPr。
2025-02-18 22:13:56
692
原创 基于LQR和前馈控制的自动驾驶控制算法(2):系统离散化与控制器设计
由上一节推导得到系统:[e1e˙1e2e˙2]˙=[01000Cαf+Cαrmvx−Caf+CarmaCαf−bCαrmvx00010aCαf−bCαrIzvx−aCαf−bCαrIza2Cαf+b2CαrIzvx][e1e˙1e2e˙2]+[0−Cαfm0−aCαfIz]δ+[0−vx+aCaf−bCarm vx0a2Caf+b2CarIz vx]θ˙r\dot{\begin{bmatrix} e_1 \\ \dot{e}_1 \\ e_2\\ \dot{e}_2 \end{bmatrix}} =
2025-02-18 21:48:57
773
原创 基于LQR和前馈控制的自动驾驶控制算法(1):二自由度动力学模型
本章内容主要参考bilibili的up主【忠厚老实的老王】中的自动驾驶控制系列视频,可以说许多内容都是我对该系列视频的学习笔记,非常感谢该大佬的用心讲解。以下是推导中涉及了较为小众的基础知识。设经过 dtdtdt 时刻,向量 r⃗\vec{r}r 移动为 r⃗+dr⃗\vec{r}+d\vec{r}r+dr ,有:dr⃗dt=dr⃗ds⋅dsdt\frac{d\vec{r}}{dt}=\frac{d\vec{r}}{ds}\cdot\frac{ds}{dt}dtdr=dsdr⋅dtds当 dt
2025-02-18 14:23:23
1902
原创 【ROS笔记】MATLAB添加ROS2/ROS自定义interfaces
【代码】【ROS笔记】MATLAB添加ROS2/ROS自定义interfaces。
2025-02-09 15:08:57
211
原创 【滑模控制】从理论到实战(2):FSAE牵引力控制系统(TCS)算法设计
在理论基础中,介绍了滑模控制器的设计步骤(基于趋近律设计)。本文将开始进入实战,设计基于滑模控制的FSAE牵引力控制系统(TCS)。以下内容将包括动力学建模、控制器设计,以及如何使用MATLAB进行公式推导。
2024-11-27 18:30:19
2890
2
原创 【滑模控制】从理论到实战(1):理论基础
滑模控制本质上是通过设计控制输入,使得系统满足李雅普诺夫稳定性判据(第二方法),以保证系统渐近稳定。本文将从系统稳定性角度出发,介绍滑模控制原理与基础。
2024-11-25 22:17:42
2087
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人