N10 - NLP中的注意力机制



1. 注意力机制是什么

在上节的seq2seq框架中,让两个循环神经网络(RNN)构成了 编码器-解码器 结构。其中编码器逐个读取输入词,获得固定维度的向量表示,然后解码器基于这些输入逐个提取输出词。
RNN构成 编码器-解码器结构
上面的结构的问题在于,解码器从编码器接受的唯一信息是 最后一个编码器隐藏状态,这是类似于对输入的序列进行总结。

所以对于较长的输入文本,结构会变成如下图所示
较长文本的RNN结构
如果仍然希望解码器仅仅利用最后一个编码器的隐藏状态的输出就输出完成的译文,肯定是不太合理地,会导致灾难性遗忘。

所以我们如果可以向解码器提供每个编码器时间步的向量表示,而不是只把最终的给它,是不是就能改进翻译的结果呢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值