机器视觉中畸变产生的三大原因及解决方案

你的机器视觉的畸变有了解吗?今天就来全面地讲一讲。


一、视差畸变(透视问题)

第一种是我们视察(视差)基本常规的。因为它的成像原理是有一个点发散出去的,如果拍摄一个立体的零件,它不在中心,而在边角的话,可能就会出现产品侧面拍出来的情况。

那如果在一些高精度的检测场景中,这对精度的影响都是致命的。

如何解决这个问题?
可以考虑这种——远心镜头。它能够完全垂直于产品去拍摄,这样就能够避免视差带来的畸变。

但它唯一的缺点就是:被拍摄物体多大,这个镜头就要多大,所以往往镜头的价格就会比较昂贵。


二、安装畸变(设备装配误差)

第二种是我们的安装畸变。

任何的安装都会存在一定的误差。像这种检测精度需要达到两微米的场景,对于安装而言,需要尽可能保证垂直。

所以需要对安装面进行各种水平度、垂直度的矫正。只有当成像是准确的,算法才能发挥它应有的价值。


三、镜头畸变(光学制造误差)

而第三种是我们镜头的畸变。

任何镜片在生产过程中多多少少会存在一定的误差,这也就决定了镜片的价格。而且最关键的是,无论多贵的镜头,它也不可能完全消除误差。

这种情况应该如何去解决?
通过视觉的算法进行畸变的矫正。

像这块标定板,这些密密麻麻的小点,它们的尺寸精度都非常高。而且你绝对想不到:这样一块玻璃板,它需要好几千块钱。

通过相机的拍照系统,能够自动地计算出畸变,从而进行矫正。


总结

以上就是我们常见的视觉畸变三种类型:

  • 视差畸变 —— 解决方案:远心镜头;
  • 安装畸变 —— 解决方案:机械安装面调平、保证垂直;
  • 镜头畸变 —— 解决方案:用标定板配合视觉算法矫正。

关注我,一起学习视觉!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客晨风

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值