Spark-Spark MLib简介

本文介绍Spark MLib机器学习库,对比Hadoop MapReduce,Spark基于内存操作,减少磁盘IO开销,支持分类、回归、聚类等算法,提供特征化工具,流水线构建及模型持久化,兼容DataFrame数据抽象,有效整合SparkSQL。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark MLib简介

传统的机器学习算法
spark机器学习
分布式计算框架

  • hadoop实现机器学习:MapReduce也可以编写机器学习,基于磁盘操作,多次迭代计算磁盘IO开销大。
  • spark实现机器学习:spark是基于内存,只有shuffle操作需要落磁盘,实现管道化处理,在内存中完成数据交接。大大减少在磁盘的IO开销。基于MLib库
    在这里插入图片描述
    MLib包含:
  • 分类、回归、聚类、协同过滤、降维。
  • 特征化工具:特征提取、转化、降维、选择工具。
  • 流水线,工作流的构建。
  • 持久化,存储训练好的模型。
  • 统计、线性代数、数据处理工具。

spark.mlib为基于RDD数据抽象,1.0版本以前。
spark.ml为基于DataFrame数据抽象。有效融合spark SQL。2.1以上。
spark支持的机器学习算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值