除了可以通过数据统计分析常用指标去描述数据之外,还可以使用可视化方法来表示、描述和总结数据。继早前的 《数据分析之 —— 常用的统计学指标》 之后,让我们使用以下图形直观地显示数据吧:
- 箱形图;
- 直方图;
- 圆形统计图;
- 条形图;
- 散点图。
在开始前,我们需要安装数据可视化的 Python 第三方库 Matplotlib ,以及用于造测试数据的 Numpy 。安装 Matplotlib : pip install matplotli
; 安装 Numpy : pip install numpy
。安装之后,导入即可使用。
import matplotlib.pyplot as plt
# 设置样式
plt.style.use('ggplot')
import numpy as np
箱型图
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。箱形图于 1977 年由美国著名统计学家约翰·图基(John Tukey)发明。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数、异常值。
np.random.seed(seed=0)
# 从“标准正态”分布返回一个(或多个)样本。
x = np.random.randn(1000)
y = np.random.randn(100)
z = np.random.randn(10