数据分析之 —— 常用的数据可视化图形

本文介绍了数据可视化中常见的五种图形:箱型图、直方图、圆形统计图、条形图和散点图。箱型图展示了数据的分散情况,直方图用矩形面积表示连续性随机变量的分布,圆形统计图用于表示总体结构,条形图适用于离散型数据,而散点图则揭示了两种现象的相关性。要绘制这些图形,需要用到Python的Matplotlib库和Numpy库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


除了可以通过数据统计分析常用指标去描述数据之外,还可以使用可视化方法来表示、描述和总结数据。继早前的 《数据分析之 —— 常用的统计学指标》 之后,让我们使用以下图形直观地显示数据吧:

  • 箱形图;
  • 直方图;
  • 圆形统计图;
  • 条形图;
  • 散点图。

常用的数据可视化图形

在开始前,我们需要安装数据可视化的 Python 第三方库 Matplotlib ,以及用于造测试数据的 Numpy 。安装 Matplotlib : pip install matplotli ; 安装 Numpy : pip install numpy 。安装之后,导入即可使用。

import matplotlib.pyplot as plt
# 设置样式
plt.style.use('ggplot')

import numpy as np

箱型图

箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。箱形图于 1977 年由美国著名统计学家约翰·图基(John Tukey)发明。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数、异常值

np.random.seed(seed=0)
# 从“标准正态”分布返回一个(或多个)样本。
x = np.random.randn(1000) 
y = np.random.randn(100)
z = np.random.randn(10
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值