1.with语句:
类似
try :
except:
finally:
的功能:但是with语句更简洁。而且更安全。代码量更少。
with后面为一个表达式,表达式返回的是一个上下文管理器对象,我的理解就是表达式的返回结果。使用as 可以将这个结果赋值给某个变量。方便之后操作。
2.zip()
函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。
>>>a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b) # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c) # 元素个数与最短的列表一致
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped) # 与 zip 相反,可理解为解压,返回二维矩阵式
[(1, 2, 3), (4, 5, 6)]
3. Bio.SeqIO
Bio.SeqIO 模块旨在提供一个简单的接口,实现对各种不同格式序列文件进行统一的处理。
解析/读取序列:
Bio.SeqIO.parse()
用于读取序列文件生成 SeqRecord 对象,包含两个参数:
第一个参数是一个文件名或者一个句柄( handle )。
第二个参数是一个小写字母字符串,用于指定序列格式。
如SeqIO.parse("ls_orchid.fasta", "fasta")
4.多线程操作池Pool
参考博客:https://www.cnblogs.com/freeman818/p/7154089.html
Windows下面的multiprocessing跟Linux下面略有不同,Linux下面基于fork,fork之后所有的本地变量都复制一份,因此可以使用任意的全局变量;在Windows下面,多进程是通过启动新进程完成的,所有的全局变量都是重新初始化的,在运行过程中动态生成、修改过的全局变量是不能使用的。
multiprocessing内部使用pickling传递map的参数到不同的进程,当传递一个函数或类时,pickling将函数或者类用所在模块+函数/类名的方式表示,如果对端的Python进程无法在对应的模块中找到相应的函数或者类,就会出错。当你在Interactive Console当中创建函数的时候,这个函数是动态添加到__main__模块中的,在重新启动的新进程当中不存在,所以会出错。
由于你下面调用multiprocessing的代码没有保护,在新进程加载这个模块的时候会重新执行这段代码,创建出新的multiprocessing池,无限调用下去。解决这个问题的方法是永远把实际执行功能的代码加入到带保护的区域中:
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4)
r=pool.map(f, range(100))
pool.close()
pool.join()
来源:知乎
5.Numpy中stack(),hstack(),vstack()函数详解
http://blog.csdn.net/csdn15698845876/article/details/73380803