OpenCV(开源计算机视觉库)是一个专注于实时计算机视觉的全面库,包含了丰富的工具和功能。以下是 OpenCV 中一些关键知识点的详细列表:
-
核心功能
基本结构:Mat、Scalar、Point、Size、Rect 等。
图像 I/O:读取、写入和显示图像。
基本操作:访问和修改像素值、创建掩膜、绘制形状等。
算术运算:对图像进行加、减、乘、除操作。 -
图像处理
颜色空间:不同颜色空间(BGR、RGB、HSV 等)之间的转换。
阈值处理:二值化、自适应阈值和 Otsu 阈值。
平滑/模糊:高斯滤波、中值滤波和双边滤波。
形态学操作:腐蚀、膨胀、开运算、闭运算和形态梯度。
边缘检测:Sobel、Scharr、拉普拉斯和 Canny 边缘检测。
梯度计算:使用 Sobel 和 Scharr 算子计算图像梯度。
直方图分析:计算、归一化、均衡化、反投影。
图像金字塔:高斯金字塔、拉普拉斯金字塔和图像融合。 -
几何变换
仿射变换:缩放、旋转、平移和剪切。
透视变换:使用单应性扭曲图像。
图像调整大小:使用不同插值方法进行上采样和下采样。
图像旋转:通过仿射变换旋转图像。
图像裁剪:提取感兴趣区域(ROI)。 -
特征检测与描述
角点和边缘:Harris 角点检测、Shi-Tomasi 角点检测。
斑点检测:SimpleBlobDetector、连通组件。
关键点检测:SIFT、SURF、ORB、BRIEF、FAST 等。
描述符提取:创建像 SIFT、SURF、ORB 的特征描述符。
特征匹配:暴力匹配、基于 FLANN 的匹配、RANSAC。 -
物体检测与识别
模板匹配:通过模板图像找