
大模型部署实战及AI工具高效使用
文章平均质量分 91
对大模型微调、部署、调优和DeepSeek等GPT工具使用进行详尽的介绍。以及RAG技术的研究
知识靠谱
深耕知识图谱,让知识更靠谱!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【大模型】什么是大模型?一文读懂大模型的基本概念
大模型的定义大模型与小模型的区别大模型相关概念大模型的发展历程大模型的特点大模型的分类大模型的泛化与微调总结大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。定义:大模型是具有大规模参数和复杂计算结构的机器学习模型,通常由深度神经网络构建,参数量可达数十亿甚至数千亿。目的。转载 2025-03-02 23:37:50 · 84 阅读 · 0 评论 -
【大模型】Windows桌面版AnythingLLM安装与配置教程
通过上述步骤,你可以在 Windows 系统上快速安装和配置 AnythingLLM 桌面版,并结合 Ollama 使用 DeepSeek 等大模型,打造一个专属的智能知识库。希望这篇教程能帮助你更好地利用 AnythingLLM,提升工作和学习效率。如果你在安装或使用过程中遇到任何问题,欢迎在评论区留言,我会尽力为你解答。原创 2025-03-02 23:15:18 · 3210 阅读 · 0 评论 -
【大模型】Ollama本地部署DeepSeek大模型:打造专属AI助手
Ollama是一个轻量级的本地AI模型运行框架,支持在Windows、Linux和MacOS上运行各种开源大语言模型。它提供了丰富的模型库,包括DeepSeek、Llama等1700+大语言模型。此外,Ollama还支持用户上传自己的模型,并允许通过编写配置文件来自定义模型的推理参数。通过以上步骤,我们可以在本地成功部署DeepSeek大模型,将其变成自己的私人AI助手。本地部署不仅提高了响应速度,还增强了隐私保护。希望这篇教程能帮助你更好地利用DeepSeek,提升工作和学习效率。原创 2025-03-02 23:07:44 · 1090 阅读 · 0 评论 -
【大模型➕知识图谱】GraphEval:基于知识图谱的LLM虚构内容检测框架
随着知识图谱技术的持续发展,GraphEval在LLM虚构内容检测领域将发挥更大的作用,为推动LLM的可靠应用提供有力支持。具体操作是,针对检测出的存在虚构信息的三元组,GraphCorrect会重新生成正确的三元组,然后将其替换回原始的LLM输出内容中,从而达到纠正虚构内容的目的,使输出结果更加符合事实。GraphEval的独特之处在于,它将LLM生成的内容转化为知识图谱结构,然后借助NLI模型来检测图谱中的每个三元组与给定上下文是否一致,从而实现更精准的虚构内容检测,并能给出具有解释性的结果。翻译 2025-02-28 23:28:47 · 85 阅读 · 0 评论 -
【大模型➕知识图谱】大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式
本文成功构建的智能辅助诊疗系统,创新性地将大模型与医疗知识图谱深度融合。借助大模型强大的语义理解和意图识别能力,结合知识图谱结构化的医疗知识,实现了对医疗问题的精准、高效解答。从代码实现部分可以清晰看到,从知识图谱的构建、问题的解析,到结果的整合与输出,各个环节紧密协同,已初步搭建起一个完整且实用的系统框架。在系统优化与扩展方面,依托专家历史诊治病案构建知识图谱,使系统知识来源更贴近临床实际,数据更具权威性和实用性;原创 2025-02-28 18:02:58 · 456 阅读 · 0 评论 -
【大模型】DeepSeek 本地化部署指南:硬件适配全解析
不同型号的 DeepSeek 模型在参数量、模型结构以及功能特性上存在显著差异,这也决定了它们各自适配的硬件环境和应用场景。下面我们将详细剖析各型号的特点、局限性以及硬件需求,同时深入探讨显存需求与量化技术,以 32B 模型为例展开分析。原创 2025-02-28 13:46:14 · 2548 阅读 · 0 评论 -
【大模型+知识图谱】大模型与知识图谱融合:技术演进、实践应用与未来挑战
大模型与知识图谱的融合不是简单拼接,而是认知智能的范式重构。当符号主义的精确性与连接主义的泛化能力深度交织,我们正站在通向可信AGI的关键路口。正如OpenKG技术委员会王昊奋教授所言:“2025年将是图模协同从技术探索走向规模落地的分水岭”。参考文献OpenKG 2024年度报告(同济大学王昊奋)大型语言模型与知识图谱协同研究综述(海豚实验室,2024)知识图谱与大模型结合方法概述(黄巍,2023)图模互补:知识图谱与大模型融合综述(CSDN,2024)原创 2025-02-27 23:58:59 · 329 阅读 · 0 评论 -
【大模型】Agentic RAG技术:从传统RAG到智能代理的演进与突破
Agentic RAG技术不仅是传统RAG的升级,更是AI系统从“信息搬运工”到“知识决策者”的质变。随着技术的不断演进,其在医疗诊断、法律文书生成、智能制造等领域的应用将持续深化。未来,Agentic RAG有望成为企业智能化转型的标配技术,推动人机协作进入更高效、更智能的新纪元。欢迎在评论区分享您的实践经验或技术疑问,共同探讨AI Agent的无限可能!原创 2025-02-27 09:08:17 · 406 阅读 · 0 评论 -
【大模型】大模型推理能力深度剖析:从通用模型到专业优化
推理模型的出现为自然语言处理领域带来了新的突破。通过优化模型架构和训练方法,推理模型在复杂任务中展现出强大的能力。未来,随着技术的不断发展,推理模型将在更多领域发挥重要作用,为人工智能的发展注入新的动力。随着人工智能技术的不断进步,大模型的推理能力将成为衡量其性能的重要标准。推理模型的广泛应用和灵活部署将推动人工智能技术在更多领域实现突破,为人类社会的发展带来更多的可能性。原创 2025-02-27 08:31:54 · 1584 阅读 · 0 评论 -
【大模型】DeepSeek-R1-70B 模型本地部署指南:显卡需求与优化策略
DeepSeek-R1-70B 模型的显卡需求需要根据量化精度、预算以及任务复杂度综合选择。高精度场景推荐使用专业级显卡(如 A100/H100),而性价比方案可以通过魔改显卡与量化技术实现。在部署过程中,需重点关注显存分配、通信效率以及散热设计。希望本文的分析和建议能够帮助开发者和企业更好地理解和部署 DeepSeek-R1-70B 模型。如果有更多问题,欢迎继续讨论!原创 2025-02-24 14:11:14 · 1782 阅读 · 0 评论 -
【大模型】DeepSeek-RAG 本地化部署与军事情报应用研究报告
探讨量子计算、通信、传感等技术在军事领域应用,如量子雷达用于目标探测、量子通信保障军事通信安全、量子计算机加速军事模拟和密码破解等,虽然与 DeepSeek 和 RAG 技术无直接关联,但从军事科技角度提供更广泛的军事技术发展视野,有助于分析未来军事情报技术发展趋势和潜在应用场景。随着人工智能技术的飞速发展,尤其是自然语言处理(NLP)和检索增强生成(RAG)技术的出现,为军事情报的分析和决策提供了新的可能性。:采用动态量化技术,将 GPU 需求从 16 张 A100 降至 4 张,实现国防级硬件适配。原创 2025-02-20 23:57:45 · 1328 阅读 · 0 评论 -
【大模型】DeepSeek:AI浪潮中的破局者
DeepSeek 以其独特的技术架构、高效的训练方式和出色的性能表现,在人工智能领域中独树一帜,成为了行业内的佼佼者。它的出现,不仅为众多领域带来了创新的解决方案,推动了各行业的智能化进程,还在全球范围内引发了广泛的关注和讨论,为人工智能的发展注入了新的活力。在金融领域,DeepSeek 助力金融机构实现数字化转型,提升风险管控能力和工作效率;在城市治理、医疗、教育等行业,它也展现出了巨大的应用潜力,为解决实际问题提供了新的思路和方法。原创 2025-02-19 23:43:59 · 1244 阅读 · 0 评论 -
【大模型】DeepSeek 的人工智能发展之路
它的出现,不仅提升了 DeepSeek 在技术领域的声誉,还极大地扩大了其市场影响力,让更多开发者和企业能够以较低成本使用高性能的大模型,推动了相关应用的开发与普及。它还支持多种语言,满足了全球不同地区用户的需求。通过在如此大规模且多样化的数据集上训练,DeepSeek LLM 具备了强大的语言理解和生成能力,能够处理各种复杂的自然语言任务,为 DeepSeek 后续模型的优化与改进提供了经验和数据基础,也让 DeepSeek 在大模型领域迈出了坚实的第一步,吸引了业界的目光,为公司树立了初步的技术形象。原创 2025-02-19 22:46:02 · 1027 阅读 · 0 评论 -
【大模型实战】0代码搭建DeepSeek本地知识库,打造专属智能助手
0代码基于DeepSeek-R1搭建本地知识库,打造个人专属智能助手原创 2025-02-05 21:39:29 · 2271 阅读 · 0 评论 -
【大模型】科普爽文_DeepSeek大模型技术路径(总体架构和技术突破)
DeepSeek大模型通过创新的训练方法、架构优化、训练效率与成本优化等技术突破,实现了高性能、低训练成本和强大的推理能力。其纯强化学习训练路径为AI模型的推理能力训练提供了新的思路,而高效的训练框架和混合精度训练技术则为大规模模型的训练提供了可行的解决方案。原创 2025-02-05 14:20:44 · 742 阅读 · 0 评论 -
【大模型+知识图谱】哈工大版chinese-roberta-wwm-ext模型介绍、下载部署和GPU显卡配置
RoBERTa模型的一个重要改进版本,由阿里云的研究团队提出。而Chinese RoBERTa-wwm-ext则是针对中文文本的预训练模型,它在哈工大的研究团队手中进一步优化,特别适用于中文自然语言处理任务。原创 2025-01-06 09:26:57 · 701 阅读 · 0 评论 -
【大模型实战】 Qwen2.5-7B大模型部署及使用推理教程(2025版最新最全教程安装)
Qwen2.5-7B 是阿里云发布的大型语言模型,属于 Qwen2.5 系列的一部分。Qwen2.5-7B 以 Apache 2.0 开源协议开源,可以完全免费商用。它在 Hugging Face 上有多个版本可供下载,包括基座版本和指令微调版本。技术规格内 容模型类型因果语言模型训练阶段包括预训练和后训练参数总量7.61B(非嵌入层参数:6.53B)注意力头数28(Q)和 4(KV)原创 2025-01-04 13:58:31 · 2411 阅读 · 0 评论 -
【大模型实战】使用Gensim训练中文维基百科数据词向量模型
以维基百科的中文网页作为语料库,进行word2vect模型训练原创 2024-05-25 14:31:47 · 860 阅读 · 0 评论 -
【大模型实战】 CUDA安装及Pytorch GPU版本安装教程(2025版最新最全教程安装)
CUDA安装教程及PyTorch配置安装教程原创 2025-01-04 01:34:12 · 1689 阅读 · 0 评论