numpy简单教程——数组

本文介绍NumPy库的基础使用,包括数组(Array)的概念、创建不同类型的数组、数组形状的修改及索引操作等核心功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 简介
numpy是python当中进行数学计算的核心库,它提供高性能的多维数组计算。

二 笔记
Array:数组,通常Excel表格看成一个二维数组。
rank:表示数组的维数。一维数组的rank是1,二维数组的rank是2。

三 实战
import numpy as np
a=np.array([1,2,3])
a
array([1, 2, 3])
type(a)
numpy.ndarray
a.shape
(3,)
#这里的-1代表3,代表占位符,下面表示1行3列向量
a=a.reshape((1,-1))
a.shape
(1, 3)
a=np.array([1,2,3,4,5,6])
a.shape
(6,)
a=a.reshape((2,-1))
a.shape
(2, 3)
a
array([[1, 2, 3],
       [4, 5, 6]])
a=a.reshape((-1,2))
a
array([[1, 2],
       [3, 4],
       [5, 6]])
a.shape
(3, 2)
a[2,0]
5
a[2,0]=55
a
array([[ 1, 2],
       [ 3, 4],
       [55, 6]])
a=np.zeros((3,3))
a
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
a=np.ones((2,3))
a
array([[1., 1., 1.],
       [1., 1., 1.]])
a=np.full((3,3),0)
a
array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 0]])
a=np.full((2,3),1)
a
array([[1, 1, 1],
       [1, 1, 1]])
a= np.eye(3)
a
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
a=np.random.random((3,4))
a
array([[0.50850376, 0.85834946, 0.61704938, 0.83240758],
       [0.10578835, 0.44256278, 0.16059778, 0.46408027],
       [0.05719437, 0.43966202, 0.27409332, 0.24824407]])


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值