cuda之二维数组的高效内存管理(cudaMallocPitch/cudaMemcpy2D)

本文介绍了CUDA中如何高效地管理二维数组内存,重点讲解了cudaMallocPitch函数用于分配对齐内存以提高行访问效率,以及cudaMemcpy2D用于仅复制二维数组的有效元素,避免无用的内存拷贝。这对于GPU科学计算和人工智能中的复杂计算任务至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为cuda具有高效利用GPU进行科学计算的优势,而人工智能的重点之一就是复杂的计算任务,因此学好GPU计算是学习AI的重点任务。这里,我们即将进行利用共享内存的矩阵运算。

我们看一个例子,如何对矩阵进行分配显卡内存以及元素赋值操作。通常来讲,在GPU中分配内存使用的是cudaMalloc函数,但是对于二维或者三维矩阵而言,使用cudaMalloc来分配内存并不能得到最好的性能,原因是对于2D或者3D内存,对齐是一个很重要的性质,而cudaMallocPitch或者cudaMalloc3D这两个函数能够保证分配的内存是合理对齐的,满足物理上的内存访问,因此可以确保对行访问时具有最优的效率,除此之外,对于数组内存的复制应当使用cudaMemcpy2D和cudaMemcpy3D来实现。而对于一维数组,使用cudaMalloc以及cudaMemcpy即可满足使用需求。下面我们通过一段代码来认识一下cudaMallocPitch这个函数。


#define N 11
#define M 3
#define GridSize 16
#define BlockSize 16
#include<iostream>
using namespace std;

__global__ void kernel(float * d_matrix, size_t pitch) {
    int count = 1;
    for (int j = blockIdx.y * blockDim.y + th
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值