数理统计之 置信区间(置信度)

本文介绍了统计学中的双侧及单侧置信区间概念,包括置信水平、置信上下限等,并讨论了置信区间的精确度及其重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

  1.      双侧置信区间
  2.      单侧置信区间
  3.      精确度

一  双侧置信区间

      总体X的分布函数F(X;\theta),\theta 未知,对于给定的\alpha \in [0,1]

       \hat{\theta}_L=\hat{\theta}_L(x_1,x_2,...x_n)

      \hat{\theta}_u=\hat{\theta}_u(x_1,x_2,...x_n)

      如果 P(\hat{\theta}_L<\theta<\hat{\theta}_u)\geq 1-\alpha

      (\hat{\theta_L},\hat{\theta}_u) 称为\theta的置信水平为1-\alpha的双侧置信区间。

       \hat{\theta}_l: 置信下限

      \hat{\theta}_u: 置信上限

   


二  单侧置信区间

      P\begin{Bmatrix} \hat{\theta_L}<\theta \end{Bmatrix}=1-\alpha_1 :  \hat{\theta}_L 为置信水平为1-\alpha_1的单侧置信下限

      P\begin{Bmatrix} \theta<\hat{\theta}_u \end{Bmatrix}=1-\alpha_2 :\hat{\theta}_u 为置信水平为1-\alpha_2的单侧置信上限

       P\begin{Bmatrix} \hat{\theta}_L<\theta<\hat{\theta}_u \end{Bmatrix}=F(\theta_u)-(1-F(\theta_L))=1-\alpha_2-\alpha_1

 


三 精确度

    置信区间 \begin{pmatrix} \hat{\theta}_L,\hat{\theta} _u \end{pmatrix} 的平均长度  E(\theta_u-\theta_L) 为区间的精确度,精度的一半称为误差限

    NeyMan 原则

    在置信水平达到1-\alpha的置信区间中,选择精确度最高的区间(误差限小)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值