AI框架工具FastRTC快速上手3——加入LLM大模型实现人机对话

目录

一 前言

二 注册阿里云百炼平台

三、案例流程剖析

四、完整实现

4.1 依赖引入

4.2 定义变量

4.3 handler方法剖析

 本专栏系列文章


一 前言

上一篇文章中AI框架工具FastRTC快速上手2——整体框架及Stream类详解-CSDN博客

我们剖析了FastRTC建立一个音视频AI应用的三部曲:

(1)定义一个handler函数

(2)定义一个Stream对象

(3)启动

为了方便理解,只是做了很简单的功能演示,还没用上AI的功能。本篇将会引入LLM大模型,结合FastRTC的快速构建能力,实现一个人机语音对话的实例。

二 注册阿里云百炼平台

为了快速获得LLM大模型能力,我们可以去现有商用平台获取相关的大模型api。获取得到后,可以直接调用,而不需要自行

### 推荐 AI 大模型项目示例和开源实现 #### 自学大模型 (Self-LLM) 自学大模型是一个专注于国内初学者的教程平台,旨在简化开源大模型的应用过程。此平台提供了详尽的指南来帮助用户完成从环境配置到高效微调等一系列操作[^1]。 对于希望深入了解并实际操作开源大模型的学习者来说,这是一个非常有价值的资源库。它不仅涵盖了技术细节还考虑到了实践中的具体挑战,使得即使是初次接触这类复杂系统的个人也能够顺利上手。 ```bash # 安装依赖项 pip install -r requirements.txt # 启动服务端口监听 python server.py --port=8000 ``` #### BELLE: Be Everyone’s Large Language Model Engine BELLE 是一个专为中文对话设计的大规模语言模型引擎,其目标是成为每个人都能使用的大型语言模型工具。该项目致力于降低使用门槛,并促进更广泛社区内的交流与合作[^2]。 通过集成先进的自然语言处理技术和优化算法,BELLE 实现了高质量的人机交互体验,在教育、客服等多个领域展现出巨大潜力。 ```json { "model": "belle", "messages": [ { "role": "user", "content": "你好,今天天气真好" } ] } ``` #### 使用 API 进行测试 为了方便开发者快速验证不同模型的效果,可以通过简单的 HTTP 请求来进行在线聊天接口测试。下面展示了一个如何利用 `curl` 命令向本地运行的服务发送消息请求的例子[^3]: ```bash curl http://localhost:11434/api/chat \ -d '{ "model": "llama3", "messages": [ {"role": "user", "content": "为什么天空是蓝色?"} ] }' ``` 以上三个部分分别介绍了适合新手入门的全面指导方案 Self-LLM ,以及面向特定应用场景如中文对话支持的 Belle 工程;最后给出了一个简单易懂的方法用于初步探索这些强大而灵活的语言模型功能[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程老师2088

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值