hdfs面试题(大全)

本文详细探讨了HDFS的多个核心概念,包括文件块大小设定、副本存放机制、数据的写入和读取流程、数据完整性保障策略、NameNode与Secondary NameNode的工作机制、集群安全模式操作以及NameNode的多目录配置。此外,还分析了HDFS在存储大量小文件和低延迟数据访问方面的局限性,并提出了相应的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.HDFS 文件块大小设定

HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

2.HDFS副本存放机制

网络拓扑

在本地网络中,两个节点被称为“彼此近邻”是什么意思?在海量数据处理中,其主要限制因素是节点之间数据的传输速率——带宽很稀缺。这里的想法是将两个节点间的带宽作为距离的衡量标准。

节点距离:两个节点到达最近的共同祖先的距离总和。

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述。

Distance(/d1/r1/n1, /d1/r1/n1)=0(同一节点上的进程)

Distance(/d1/r1/n1, /d1/r1/n2)=2(同一机架上的不同节点)

Distance(/d1/r1/n1, /d1/r3/n2)=4(同一数据中心不同机架上的节点)

Distance(/d1/r1/n1, /d2/r4/n2)=6(不同数据中心的节点)

3.HDFS数据写入流程?

1.client 发起文件上传请求,通过 RPC 与 NameNode 建立通讯,
2.NameNode检查目标文件是否已存在,父目录是否存在,检查权限。(若通过检查,直接将操作写入编辑日志(edits)),返回是否可以上传
3.client 按block块大小进行切分,形成数据队列,之后请求上传第一个 block;
4.NameNode 根据配置文件中指定的备份数量及副本放置策略进行文件分配,返回可用的 DataNode 的地址,如:A,B,C
5.client 请求 3 台 DataNode 中的一台 A 上传数据(本质上是一个 RPC 调用,建立 pipeline),A 收到请求会继续调用 B,然后 B 调用 C,将整个pipeline 建立完成,后逐级返回 client;
6.client 开始往 A 上传第一个 block(先从磁盘读取数据放到一个本地内存缓存),以 packet 为单位(默认 64K),A 收到一个 packet 就会传给 B,B 传给 C;A 每传一个 packet 会放入一个应答队列等待应答
7.数据被分割成一个个 packet 数据包在 pipeline 上依次传输,在pipeline 反方向上,逐个发送 ack(命令正确应答),最终由 pipeline中第一个 DataNode 节点 A 将 pipeline ack 发送给 client;
8.当一个 block 传输完成之后,client 再次请求 NameNode 上传第二个block 到服务器

底层实现

 

1.客户端通过调用DistributedFileSystem的create方法创建新文件。
​
2.DistributedFileSystem通过RPC调用namenode去创建一个没有blocks关联的新文件,创建前, namenode会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过, namenode就会记录下新文件,否则就会抛出IO异常。
​
3.前两步结束后,会返回FSDataOutputStream的对象,与读文件的时候相似, FSDataOutputStream被封装成DFSOutputStream。DFSOutputStream可以协调namenode和 datanode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小的packet,然后排成队 列data quene(数据队列)。
​
4.DataStreamer会去处理接受data quene,它先询问namenode这个新的block最适合存储的在哪几个datanode里(比如重复数是3,那么就找到3个最适合的 datanode),把他们排成一个pipeline。DataStreamer把packet按队列输出到管道的第一个datanode中,第一个 datanode又把packet输出到第二个datanode中,以此类推。
​
5.DFSOutputStream还有一个对列叫ack quene,也是由packet组成,等待datanode的收到响应,当pipeline中的所有datanode都表示已经收到的时候,这时ack quene才会把对应的packet包移除掉。 
​
    如果在写的过程中某个datanode发生错误,会采取以下几步: 
    1)pipeline被关闭掉; 
    2)为了防止防止丢包ack quene里的packet会同步到data quene里; 
    3)把产生错误的datanode上当前在写但未完成的block删掉; 
    4)block剩下的部分被写到剩下的两个正常的datanode中; 
    5)namenode找到另外的datanode去创建这个块的复制。当然,这些操作对客户端来说是无感知的。
​
6.客户端完成写数据后调用close方法关闭写入流。
​
7.DataStreamer把剩余得包都刷到pipeline里,然后等待ack信息,收到最后一个ack后,通知datanode把文件标视为已完成。
​
    注意:客户端执行write操作后,写完的block才是可见的(注:和下面的一致性所对应),正在写的block对客户端是不可见的,只有 调用sync方法,客户端才确保该文件的写操作已经全部完成,当客户端调用close方法时,会默认调用sync方法。是否需要手动调用取决你根据程序需 要在数据健壮性和吞吐率之间的权衡

 

4.HDFS数据读取流程?

1.client 发起文件读取请求通过RPC与NameNode建立通讯,
2.nameNode检查文件位置,来确定请求文件 block 所在的位置,
对于每个block,NameNode 都会返回含有该 block 副本的 DataNode 地址;
这些返回的 DN 地址,会按照集群拓扑结构得出 DataNode 与客户端的距离,然后进行排序,排序两个规则:网络拓扑结构中距离 Client 近的排靠前;心跳机制中超时汇报的 DN 状态为 STALE,这样的排靠后;
3.Client 选取排序靠前的 DataNode 来读取 block,如果客户端本身就是DataNode,那么将从本地直接获取数据。
底层上本质是建立 Socket Stream(FSDataInputStream),重复的调用父类 DataInputStream 的 read 方法,直到这个块上的数据读取完毕;
4.读取完一个 block 都会进行 checksum 验证,如果读取 DataNode 时出现错误,客户端会通知 NameNode,然后再从下一个拥有该 block 副本的DataNode 继续读。
5.读完后会关闭此datanode的连接,访问下一个块最佳datanode。每个读取的块都会追加到前一个block当中直到所有块读完,形成最终的文件。

底层实现

 

1.首先调用FileSystem对象的open方法,其实是一个DistributedFileSystem的实例。
2.DistributedFileSystem通过rpc获得文件的第一批block的locations,同一个block按照重复数会返回多个locations,这些locations按照hadoop拓扑结构排序,距离客户端近的排在前面。
3.前两步会返回一个FSDataInputStream对象,该对象会被封装DFSInputStream对象,DFSInputStream可 以方便的管理datanode和namenode数据流。客户端调用read方法,DFSInputStream最会找出离客户端最近的datanode 并连接。
4.数据从datanode源源不断的流向客户端。
5.如果第一块的数据读完了,就会关闭
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值