RAG 作者Douwe kiela最近讲课,阐述RAG 使用过程中的10个经验教训,值得每个人反思。
据研究表明,当前存在明显的 AI 语境认知矛盾:大型语言模型(LLM)在执行复杂逻辑推理、信息综合分析、程序代码生成及数学运算等领域展现出超凡能力(这些通常被视为人类认知的高阶挑战),然而在解析与应用特定语境信息(Context)方面却表现出显著局限性,而这恰恰是人类依靠直觉推理和领域专业知识能够轻松掌握的能力。
企业若要从人工智能应用中获取差异化竞争优势与实现业务模式转型(而非仅限于便捷性或效率提升),必须构建基于深度、精准的企业特定语境知识体系。目前市场上绝大多数应用仍局限于低语境信息需求的"便利性工具"阶段。
十大经验教训:
1.高性能LLM并非(唯一)解决方案: 大型语言模型仅构成整体AI架构(尤其是检索增强生成系统,包含信息提取、语义检索、内容生成及联合优化等环节)的一小部分组件(约占20%)。一个架构完善的RAG系统即使搭配中等性能的LLM,其效能往往优于顶尖LLM配合设计不佳的RAG系统。核心在于聚焦整体系统架构而非单一模型性能。
2.专业领域知识是关键驱动因素: 企业内部沉淀的专业知识体系与机构知识库(通常蕴含于文档资料与结构化数据中)是驱动AI创造商业价值的核心资源。企业必须系统性地激活与利用这些专业知识资产。
3.企业规模形成竞争壁垒: 企业的核心差异化优势源于其独特数据资产。真正的技术挑战在于大规模、系统化地利用这些数据,使AI能够高效