pytorch 梯度算法介绍

梯度下降算法推导

假设有一个序列xn, 对应目标是yn, 通过模型预测得到的结果是\hat{y_{n}}, 则MSE损失函数有

cost= \frac{1}{N}\sum_{n=1}^{N}(\hat{y_{n}} - y_{n})^{2}

优化问题变成求min(loss)

对于求min(loss), 本质是要梯度的负方向,所以更新梯度的问题变成

w = w - \alpha * \frac{\partial cost}{\partial w} 

其中,a是学习率。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值