spark从hdfs上读取文件运行wordcount

本文介绍了一个基于Hadoop与Spark集群环境的搭建过程,并通过具体实例演示了如何使用Spark进行WordCount任务的执行流程。首先配置了Hadoop集群,包括namenode、SecondaryNameNode和datanode等组件;接着设置了Spark Master和Worker节点。随后,通过上传文件至HDFS,并在Spark shell中执行一系列操作完成了WordCount任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.配置环境说明

hadoop配置节点:sg202(namenode SecondaryNameNode)  sg206(datanode) sg207(datanode) sg208(datanode)

spark配置节点:sg201(Master)  sg211(Worker)

2.从hdfs上读取文件并运行wordcount

a. 登录hadoop的主节点sg202 将要进行wordcount的文件上传到hdfs上

[root@sg202 hadoop-1.0.4]# hadoop fs -put /home/hadoop-1.0.4/README.txt  input

b. 登录spark的Master节点(sg201)进入sparkshell

[root@sg201 spark-0.7.3]# MASTER=spark://172.16.48.201:7077 ./spark-shell

c. 运行wordcount

scala> val file=sc.textFile("hdfs://172.16.48.202:9000/user/root/input/README.txt")

scala> val count=file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)

scala> count.collect()


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值