找数组中是否有两个数之和等于目标值

❓题目:

给定一个整数数组 nums 和一个目标值 target,判断是否存在两个数相加等于 target,返回布尔值。

例如:

int[] nums = {2, 7, 11, 15};
int target = 9;
// 返回 true,因为 2 + 7 = 9


🧠 解法一:暴力双循环

实现:

for (int i = 0; i < nums.length; i++) {
    for (int j = i + 1; j < nums.length; j++) {
        if (nums[i] + nums[j] == target) {
            return true;
        }
    }
}
return false;

⏰ 时间复杂度分析:

  • 两层嵌套循环 → 每层最多 n 次

  • 所以执行次数大约是 n * n = n²

  • 时间复杂度:O(n²)

💾 空间复杂度分析:

  • 没有使用任何额外的存储结构。

  • 空间复杂度:O(1)


🧠 解法二:使用 HashSet 优化(空间换时间)

思路:

我们在遍历的同时,用一个 HashSet 存下已经看过的数字。

每看一个数 x,判断 target - x 是否已经存在,如果存在,则找到了两个数。

实现:

 
Set<Integer> seen = new HashSet<>();
for (int num : nums) {
    if (seen.contains(target - num)) {
        return true;
    }
    seen.add(num);
}
return false;


⏰ 时间复杂度分析:

  • 遍历一次数组 → n 次

  • HashSet 查找、插入都是 O(1) 平均复杂度

  • 总时间复杂度:O(n)


💾 空间复杂度分析:

  • 最坏情况下,要存下所有 n 个数字

  • 使用了一个大小为 n 的 HashSet

  • 空间复杂度:O(n)


📊 对比总结表格:

解法时间复杂度空间复杂度思路
暴力双循环O(n²)O(1)穷举所有组合
HashSet优化O(n)O(n)边查边存,空间换时间


📌 面试答题模板:

这道题我们可以先用暴力法解决,时间复杂度是 O(n²),空间是 O(1)。为了优化时间性能,我们可以用 HashSet 在一遍遍历中查找另一个数,时间复杂度降到 O(n),但需要 O(n) 的额外空间存储已遍历元素。这属于典型的空间换时间的优化策略。


🧠 延伸理解关键词:

  • 空间换时间:用额外的内存(比如 HashMap、HashSet、数组缓存等)换取查找/计算效率。

  • 时间换空间:少用空间(不建新结构),但可能导致重复运算、性能低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值