深度学习框架对应的CUDA版本

本文详细介绍了CUDA、CuDNN与深度学习框架如TensorFlow和PyTorch之间的版本对应关系。针对TensorFlow-gpu,建议1.14、1.15版本使用CUDA10.0,而2.0及以上版本则根据对应表选择CUDA版本。对于PyTorch,官方提供了清晰的CUDA版本选择指示。同时,文章强调了正确匹配CUDA、CuDNN版本的重要性,以确保深度学习模型的顺利训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

CUDA (Compute Unified Device Architecture),是NVIDIA发布的一个通用并行计算平台和编程模型。基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地解决计算量大的难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。各个深度学习框架基本也都是CUDA实现对GPU的调用及操作。截至本文发文,最新的CUDA版本为CUDA11.6。

本文主要记录,不同的深度学习框架使用CUDA需要注意的版本等问题。

注意事项

以GPU版本的tensorflow为例,一般注意以下几个问题就不会出错。

1、确定自已要安装那个版本的 tensorflow-gpu;

2、根据自己要装的tensorflow-gpu版本确定要下载的CUDA版本;

3、根据要安装的CUDA版本确定要下载的Cudnn版本(CUDA Deep Neural Network,是用于深度神经网络的GPU加速库)

Tensorflow-gpu版本与CUDA版本对应关系

如下表所示

 对于版本号大于1.13的tensorflow-gpu的1.x版本,如1.14、1.15,建议安装CUDA10.0,不要安装CUDA10.1,安装后会提示缺少很多库文件,而导致GPU版本的tensorflow无法使用,如下图所示:

 如果是2.0以上的tensorflow,则按下面列表安装:

TFCUDAcudnn
2.010.07.6
2.110.17.6
2.210.17.6
2.310.17.6
2.411.08.0
2.511.28.1
2.611.38.2
2.711.38.2

PyTorch-gpu版本与CUDA版本对应关系

为了用户下载的PyTorch与机器的CUDA版本能应对上,PyTorch的官网做了非常清晰的下载指示。如下图:

目前主流使用的版本为基于CUDA11.3的PyTorch1.11

可参见:Start Locally | PyTorch

CUDNN与CUDA的对应关系

可以直接通过nvidia的官网查看: cuDNN Archive | NVIDIA Developer

参考网址:

CUDA Toolkit 11.6 Update 2 Downloads | NVIDIA Developer

安装tensorflow GPU版本--tensorflow-gpu版本与CUDA版本对应关系(持续更新,目前到TF2.7)_ACE-Mayer的博客-CSDN博客_tensorflow与cuda版本对应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值