Tree
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
- Little Valentine liked playing with binary trees very much. Her favorite game was constructing randomly looking binary trees with capital letters in the nodes.
This is an example of one of her creations:
D / \ / \ B E / \ \ / \ \ A C G / / F
To record her trees for future generations, she wrote down two strings for each tree: a preorder traversal (root, left subtree, right subtree) and an inorder traversal (left subtree, root, right subtree). For the tree drawn above the preorder traversal is DBACEGF and the inorder traversal is ABCDEFG.
She thought that such a pair of strings would give enough information to reconstruct the tree later (but she never tried it).
Now, years later, looking again at the strings, she realized that reconstructing the trees was indeed possible, but only because she never had used the same letter twice in the same tree.
However, doing the reconstruction by hand, soon turned out to be tedious.
So now she asks you to write a program that does the job for her!
- 输入
- The input will contain one or more test cases.
Each test case consists of one line containing two strings preord and inord, representing the preorder traversal and inorder traversal of a binary tree. Both strings consist of unique capital letters. (Thus they are not longer than 26 characters.)
Input is terminated by end of file. 输出 - For each test case, recover Valentine's binary tree and print one line containing the tree's postorder traversal (left subtree, right subtree, root). 样例输入
-
DBACEGF ABCDEFG BCAD CBAD
样例输出 -
ACBFGED CDAB
-
已知前序中序求后序,我认为它就是一个DFS。 看了好多非链表的求法,自己根据喜好写了个便于自己理解的。
-
#include <cstdio> #include <cstring> char preorder[30]; char inorder[30]; char postorder[30]; void build(int n, int pre, int in, int rec) { if(n <= 0) return ;//无子树 int i; for(i = 0; ; i++) { if(preorder[pre] == inorder[in+i])//找到位置 break; } build(i, pre+1, in, rec);//左子树 build(n-i-1, pre+i+1, in+i+1, rec+i);//右子树 postorder[n-1+rec] = preorder[pre];//记录 } int main() { int n; while(scanf("%s%s", preorder, inorder) != EOF) { n = strlen(preorder); build(n, 0, 0, 0); postorder[n] = '\0'; printf("%s\n", postorder); } return 0; }
-
附上一个刘汝佳的指针版本:
-
#include <cstdio> #include <cstring> char preorder[30]; char inorder[30]; char postorder[30]; void build(int n, char *s1, char *s2, char *s3) { if(n <= 0) return ; int pos = strchr(s2, s1[0]) - s2;//在中序序列中找根节点的位置 build(pos, s1+1, s2, s3);//找左子树的后序序列 build(n-pos-1, s1+pos+1, s2+pos+1, s3+pos);//找右子树的后序序列 s3[n-1] = s1[0];//记录 } int main() { int n; while(scanf("%s%s", preorder, inorder) != EOF) { n = strlen(preorder); build(n, preorder, inorder, postorder); postorder[n] = '\0'; printf("%s\n", postorder); } return 0; }
- The input will contain one or more test cases.