Deepseek:多轮对话与上下文拼接

今天的内容,应该很好理解。我们先从场景切入来理解。首先,你回想一下,有没有遇到过这样的情况:和朋友聊天时,聊了一会儿,突然朋友说起之前的某个话题,你却有点反应不过来,得努力回忆之前说了啥。

人工智能之所以“智能”,因为它就不可能这么健忘。在和 Deepseek 聊天,在多轮对话中,Deepseek 就像一个记忆力超强的小伙伴,能清楚记得你们聊过的每一个重要细节,让对话一直顺顺畅畅。这背后呀,藏着 Deepseek 独特的记忆原理,还有上下文拼接的巧妙方法呢。一起了解下,看看 Deepseek 是怎么做到的。

图片

一、Deepseek 的 “记忆口袋”:对话历史的存储
想象一下,Deepseek 有一个超级大的 “记忆口袋”,每次和你对话,它都会把你说的话,还有它自己给出的回答,整整齐齐地放进这个口袋里。这就好比我们用小本本记录每天发生的事儿一样,Deepseek 用它的方式记录着每一轮对话。
 

在技术层面,这种存储并非简单堆积,而是基于高效的数据结构与算法设计。在技术上,它常常是把对话历史存到一个列表里。比如说,你问 Deepseek:“今年有哪些好看的科幻电影呀?” 它回答:“像《流浪地球 2》就很精彩,特效超棒。” 这一问一答就会被当作一条记录,存到列表里。下一轮你接着问:“那这部电影的导演还有其他作品吗?”Deepseek 就会从这个列表里,把之前的记录翻出来,这样它就能知道你们之前聊的是《流浪地球 2》,回答就不会跑偏啦。

技术层面如何实现,Deepseek 会将对话历史以序列形式存储在内存或数据库中。就拿 Python 语言为例,它可能会使用列表(List)来存放每一轮对话记录。每一条记录都是一个包含用户输入和模型回复的字典(Dictionary)。

conversation_history = [     {"user": "今年有哪些好看的科幻电影呀?", "model": "像《流浪地球2》就很精彩,特效超棒。"},     {"user": "那这部电影的导演还有其他作品吗?", "model": "这位导演之前还执导过《XX》,同样是科幻题材,也值得一看。"} ]

二、上下文拼接:把对话串成 “珍珠项链”
Deepseek 在回答你的新问题时,可不是只看你刚说的这一句话哦。它会像串珍珠项链一样,把你当前说的话和之前的对话历史都拼接在一起,形成完整的上下文。这就好像你在给朋友讲故事,前面讲了一段,后面接着讲的时候,得把前面的情节也想起来,才能把故事讲连贯。

在技术层面的实现,Deepseek会把当前提问和之前的对话历史拼接在一起,形成完整的上下文。这一过程远比表面看到的文字串联复杂,涉及到注意力机制嵌入向量等核心技术。

如:当用户输入新问题时,Deepseek 首先会将文字转换为词向量,即将每个词语映射为高维空间中的一个点,这些点包含了词语的语义信息。例如,“电影” 和 “影片” 在向量空间中位置相近,因为它们语义相似。然后,模型会通过Transformer 架构中的多头注意力机制,对历史对话和当前问题的词向量进行加权计算。简单理解,就是模型会给重要信息赋予更高的权重,就像我们读书时用荧光笔标记重点内容。

在拼接方式上,Deepseek 并非简单地将所有历史对话和当前问题按顺序连接。它会根据对话长度和模型输入限制,采用滑动窗口分层聚合策略。比如,当对话过长时,滑动窗口会选取最近的、最相关的几轮对话进行拼接;而分层聚合则会先对历史对话进行分层摘要,再与当前问题整合,避免信息冗余。

所以deepseek把当前的提问和之前的对话内容放在一起,这样就能根据整个对话的来龙去脉,给出最合适的回答。比如说,你一开始告诉 Deepseek 你最近在学编程,后面问它 “Python 里怎么定义函数呀”,它就能结合你在学编程这个背景,给出更符合你需求的回答,像是教你一些适合初学者的函数定义方法。
 

三、模型推理:根据记忆给出精彩回答
当 Deepseek 把上下文拼接好后,就会把这些内容输入到它的 “大脑”—— 模型里。这个模型就像是一个聪明的小博士,会根据之前的对话历史,思考怎么回答你才最合适。
 

基于技术层面实现:当 Deepseek 把上下文拼接好后,会将其输入到核心的语言模型中进行推理。目前,Deepseek 可能基于Transformer 架构构建模型,该架构通过自注意力机制捕捉文本中的长距离依赖关系。

就像我们读书学习,积累了很多知识,遇到问题就能从脑子里找答案。Deepseek 的模型也会从记忆里提取信息,然后生成回复。比如说,你和它聊旅游,前面说想去海边,后面问哪个海边城市好玩,模型就会从之前关于海边旅游的对话记忆里,找出像青岛、三亚等美丽海边城市,推荐给你。

而技术层面的实现,在推理过程中,模型会根据上下文的词向量序列,预测下一个词语的概率分布。例如,当输入 “《流浪地球 2》的主演” 时,模型会计算 “吴京”“屈楚萧” 等词语出现的概率,并选择概率最高的词语作为输出。这一过程涉及到复杂的数学计算,包括矩阵乘法、激活函数等,最终通过softmax 函数将计算结果转换为概率。

为了让回答更符合逻辑和语境,Deepseek 还会运用强化学习技术。它会根据用户反馈或预设的奖励机制,调整模型参数,优化回答质量。比如,如果用户对某个回答点赞或继续追问相关问题,模型会认为该回答有效,增加类似回答的生成概率;反之,则降低相关参数权重。

四、管理记忆:避免 “信息超载”
随着对话一轮一轮地进行,要是 Deepseek 一直把所有内容都记着,就会像书包里装了太多东西,变得沉甸甸不好用。所以,这里会涉及到几个关键的技术点。。
 

1、截断:留下最近的 “新鲜事儿”
Deepseek 会选择保留最近的对话内容,就像我们更记得昨天发生的事儿,而不是一个月前的。它会自动把比较早的、不太重要的对话内容 “忘掉” 一些,只留下那些最新的、对当前回答最有用的信息。这样,它的 “记忆口袋” 就不会被撑爆,还能保证回答是基于最新的情况。


而在技术层面,截断的含义就是在平衡信息与效率。Deepseek 通常会设定一个最大上下文长度,当对话历史超过该长度时,就会采用滑动窗口截断重要性排序截断。滑动窗口只保留最近的若干轮对话,类似于我们只记住最近发生的事情;重要性排序则根据对话内容的关键词、用户关注度等因素,筛选出最重要的信息保留。

2、摘要:提取关键 “小纸条”
它还会像我们读书时做笔记一样,从长长的对话里提取关键信息。比如说,你们聊旅游计划,提到了要去的城市、想玩的景点、打算的出行时间,Deepseek 就会把这些关键信息整理出来,当成 “小纸条” 存着。下次再聊的时候,它就根据这些关键 “小纸条”,快速想起重要内容,回答得又快又准。
记忆机制:给重要信息 “贴标签”


对于一些特别重要的信息,Deepseek 会给它们 “贴标签”,放进一个长期记忆模块里。就好比我们把珍贵的照片放进相册的特殊位置,好好保存。当后面的对话又涉及这些重要信息时,Deepseek 就能马上从长期记忆模块里把它们找出来,让对话一直连贯。比如说,你一开始就告诉 Deepseek 你对历史文化景点特别感兴趣,后面不管聊到哪个旅游城市,它都会想着给你推荐历史文化相关的地方。

在在技术层面,摘要就是提炼关键信息。为了更高效地利用历史对话,Deepseek 会运用文本摘要算法,如基于深度学习的BART(Bidirectionaland Auto-Regressive Transformer)模型或GPT-based 摘要方法。这些算法会自动提取对话中的关键句子和信息,生成简洁的摘要,就像我们读完一本书后,用几句话概括核心内容。意图识别:读懂你的 “小心思”。Deepseek 还会努力识别你说话的意图,就像我们和好朋友聊天,能听出对方是好奇、求助还是分享。通过识别你的意图,它能更准确地理解上下文。比如你问 “那个城市有啥好玩的地方?” 要是它识别出你是想去旅游,就会从旅游相关的记忆里找答案,而不是给出一些不相关的内容。


 3、记忆机制:强化重要信息

对于关键信息,Deepseek 会通过长期记忆模块进行强化存储。该模块类似于我们的 “重点笔记本”,采用知识图谱向量数据库技术,将重要信息及其关联关系进行结构化存储。例如,当用户提到自己是 “Python 开发者”,模型会将这一信息与后续相关问题(如 Python 函数定义、框架使用等)建立关联,在后续对话中优先调用。

5、意图识别:精准理解用户需求

Deepseek 利用自然语言处理(NLP)技术进行用户意图识别,如命名实体识别(NER)意图分类等。通过分析用户输入中的关键词、语法结构和语义信息,模型能准确判断用户是在提问、寻求建议,还是进行闲聊。例如,当用户问 “附近的咖啡馆”,模型能识别出用户意图是获取地理位置信息,从而从记忆中调取相关内容并给出回答。

最后小结一下:

Deepseek 的多轮对话记忆与上下文拼接技术,是人工智能领域的一项重要突破。随着技术的不断进步,它将为我们带来更加智能、流畅的对话体验,在教育、客服、娱乐等众多领域发挥更大的价值。

Deepseek 现在的记忆原理和上下文拼接方法,已经让我们的对话变得又流畅又有趣啦。我想随着技术发展,也许以后,Deepseek 能记住更长时间的对话内容,不管你们聊了多久,它都能记得清清楚楚。还可能会更懂你的情绪,根据你是开心、烦恼还是疑惑,给出更贴心的回答。

未来,Deepseek 可能会朝着以下方向发展:

1、多模态记忆:不仅存储文本信息,还能处理图像、语音等多模态数据,实现更丰富的交互体验。

2、个性化记忆:根据用户的使用习惯和偏好,动态调整记忆策略和回答风格,提供更贴心的服务。

3、实时学习:在对话过程中实时更新模型参数,快速适应新的知识和用户需求,就像我们在交流中不断学习新知识一样。

今天就到这里了,下次再继续探讨。对了,你现在就可以和 Deepseek 聊天时,不妨多聊几轮,感受感受它那强大的 “记忆力” 背后的技术魅力吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值