Tensor Core 深度剖析

Tensor Core 是英伟达研发的一种新型处理核心,专为深度学习和其他大规模并行计算任务而设计。以下是对 Tensor Core 的深度剖析:

1. 基本原理:

    混合精度计算:与传统的 CUDA Core(全浮点型)不同,Tensor Core 支持混合精度计算。在输入、输出时使用较低的精度(如 FP16),而在计算过程中使用较高的精度(如 FP32)。这种设计在不牺牲过多计算精度的前提下,大幅提升了计算速度。例如,在训练深度学习模型时,输入数据和中间结果可以用 FP16 格式存储和计算,而最终的结果或关键的计算步骤可以使用 FP32 格式来保证精度。

    矩阵乘法的并行计算:在深度学习中,矩阵乘法是最常见的计算操作之一,Tensor Core 通过优化矩阵乘法的执行方式,实现了更高的计算效率和更低的资源占用。它能够同时对多个小型矩阵进行乘法和累加操作,将这些操作并行执行,从而大大提高了计算吞吐量。

2. 工作过程:

    数据加载:计算开始前,需要将参与运算的矩阵数据从内存加载到寄存器中。每个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bj陈默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值