Tensor Core 是英伟达研发的一种新型处理核心,专为深度学习和其他大规模并行计算任务而设计。以下是对 Tensor Core 的深度剖析:
1. 基本原理:
混合精度计算:与传统的 CUDA Core(全浮点型)不同,Tensor Core 支持混合精度计算。在输入、输出时使用较低的精度(如 FP16),而在计算过程中使用较高的精度(如 FP32)。这种设计在不牺牲过多计算精度的前提下,大幅提升了计算速度。例如,在训练深度学习模型时,输入数据和中间结果可以用 FP16 格式存储和计算,而最终的结果或关键的计算步骤可以使用 FP32 格式来保证精度。
矩阵乘法的并行计算:在深度学习中,矩阵乘法是最常见的计算操作之一,Tensor Core 通过优化矩阵乘法的执行方式,实现了更高的计算效率和更低的资源占用。它能够同时对多个小型矩阵进行乘法和累加操作,将这些操作并行执行,从而大大提高了计算吞吐量。
2. 工作过程:
数据加载:计算开始前,需要将参与运算的矩阵数据从内存加载到寄存器中。每个