Fuzzy c-means (FCM)聚类算法

本文深入探讨了模糊C-均值(FCM)聚类算法,这是一种用于数据分组的统计方法,特别适用于处理边界不清晰的数据集。FCM通过模糊隶属度来确定数据点属于某个类别的程度,从而提供更灵活的聚类结果。文章详细介绍了算法原理,包括计算隶属度和更新质心的过程,并给出了实例分析,帮助读者理解其工作方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法原理
允许同一数据属于多个不同的类。该算法
(developed by Dunn in 1973 and improved by Bezdek in 1981)经常用于模式识别,基于最小化

下列目标函数:

      ,    

其中, m 是大于1的实数,uijxi 属于类别 j隶属度, xi 第i个测量到的d维数据, cj 是类j的聚类中心,||*|| 表示任一测量数据与聚类

中心的相似度。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值