机器学习笔记(二)——多变量最小二乘法

在上一节中,我们介绍了最简单的学习算法——最小二乘法去预测奥运会男子100米时间。但是可以发现,它的自变量只有一个:年份。通常,我们所面对的数据集往往不是单个特征,而是有成千上万个特征组成。那么我们就引入特征的向量来表示,这里涉及到矩阵的乘法,向量,矩阵求导等一些线性代数的知识。


一. 将拟合函数由单变量改写为多变量

设我们的拟合函数

f(xi;ω)=ωTxi

其中, w表示拟合函数的参数,xi表示数据集中第i条数据。

对于上节中的f(x;a,b)=ax+b,我们可以令

ω=[ab],xi=[x1]

则这两个函数等价。为了方便推导,我们在损失函数前边加上1N,由于N是定值,它代表数据集的记录数。那么,损失函数可以写为:

L=1Ni=1N(yiωTxi)2=1N
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值