在上一节中,我们介绍了最简单的学习算法——最小二乘法去预测奥运会男子100米时间。但是可以发现,它的自变量只有一个:年份。通常,我们所面对的数据集往往不是单个特征,而是有成千上万个特征组成。那么我们就引入特征的向量来表示,这里涉及到矩阵的乘法,向量,矩阵求导等一些线性代数的知识。
一. 将拟合函数由单变量改写为多变量
设我们的拟合函数
f(xi;ω)=ωTxi
其中, w表示拟合函数的参数,xi表示数据集中第i条数据。
对于上节中的f(x;a,b)=ax+b,我们可以令
ω=[ab],xi=[x1]
则这两个函数等价。为了方便推导,我们在损失函数前边加上1N,由于N是定值,它代表数据集的记录数。那么,损失函数可以写为:
L=1N∑i=1N(yi−ωTxi)2=1N