python 笔记

进程与线程

线程是操作系统能够调度的最小单位;

线程就是一堆指令,线程包含在进程中,一个进程可以并发多个线程,每条线程并行执行多个不同任务;

每一个程序的内存是独立,不能互相访问的;

进程:qq要以一个整体的形式暴露给操作系统管理,里面包含对各种资源调用,内存的使用,对各种资源管理的集合就可以成为进程

进程操作cpu,必须要先创建一个线程,进程不具备操作指令的功能,只是一堆指令的集合,一个进程要执行指令至少需要一个线程,进程里的第一个线程就是主线程;

所有在同一个进程里的线程是共享同一块内存空间的;

每一个程序执行的实例就称为一个进程,每一个进程提供执行这个程序所需要的资源;

进程线程区别?

启动一个线程要比启动一个进程快,启动之后不会产生差别;

线程共享内存空间,进程是独立内存空间;

同一个进程的线程之间可以直接交流,两个进程想通信必须通过中间代理来实现;

创建新线程很简单,创建新进程需要对父进程进行一次克隆;

一个线程可以控制操作同一进程内的其他线程,进程只能操作子进程

修改线程是不会对其他线程产生影响的,修改一个进程会对其他造成影响的;

python简单并发

import threading
import time

def run(n):
    print("task", n)
    time.sleep(2)
    
t1 = threading.Thread(target=run, args=("t1",))
t2 = threading.Thread(target=run, args=("t2",))

t1.start()
t2.start()
import threading
import time

class MyThread(threading.Thread):
    def __init__(self,n):
        super(MyThread, self).__init__()
        self.n = n

    def run(self):
        print("runnint task", self.n)
        time.sleep(2)

start_time = time.time()
t_objs = []
for i in range(50):


    t1 = MyThread('t1-%s' %i)

    t1.start()
    t_objs.append(t1)

for t in t_objs:
    #等待线程
    t.join()
#打印程序执行的时间
print(time.time()-start_time)

守护线程

GIL锁

python线程调用系统的原生线程

sleep不占用cpu

events 

是不同线程之间同步的对象

enent = threading.Event()

event.wait()  #等待标志位被设定

event.set()  #设置标志位

event.clear()  #清空标志位

举例:

import time
import threading

event = threading.Event()

def lighter():
    count = 0
    event.set()

    while True:
        if count >5 and count < 10:
            event.clear()
            print('red')
        elif count > 11:
            event.set()
            count = 0
        else:
            print('绿灯')
        time.sleep(1)
        count += 1
def car(name):
    while True:
        if event.is_set():
            print('%s 车辆通行'%name)
            time.sleep(1)
        else:
            print('%s 等待绿灯'%name)
            event.wait()
            print('车辆启动')
car_go = threading.Thread(target=car, args=('Jait',))
car_go.start()

li = threading.Thread(target=lighter,)
li.start()

队列作用:

1. 程序间解耦   2. 提高运行效率

队列就是有顺序的容器

 

多线程:

python多线程不适合cpu密集型操作任务,适合io操作密集的任务

多进程之间数据是无法正常通信的

转载于:https://my.oschina.net/FrankXin/blog/1628721

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值