通俗地讲讲算法开发和部署的流程

许多学习资料都非常的碎片零散,算法是算法,部署是部署,开发是开发。学了算法不知道它怎么在机器上运行的,学了部署不知道开发是怎么调用它的,学了开发不知道算法要给你个什么玩意儿。

今儿个通俗地梳理一下整个算法开发和部署的流程,用我似懂非懂的理解。

1. 算法开发

简单理解,算法就是一种计算方法,无论是机器学习中的SVM,GBDT还是深度学习中的各种神经网络层,CNN,POOL,CBL,ELAN,SPPF,SPP,CSP,BOTTLENECK等等,都是一种计算方法,好比是一个参数待求的复杂的函数F(x)。需要从输入的数据中提取特征,经由函数映射到一个结果,可能是分类结果,也可能是回归结果。

1.1 明确目的与评估标准

就是我要实现个什么目的,一切都是为了解决真实问题,没有问题,就没有必要去开发,躺平就好。有了问题,就需要有应对方法,选择什么样的算法。而选择什么样的算法,有些前提条件,就是要满足使用要求,就像做土木工程的,盖房子有质量验收标准,比如要求结果墙体垂直度每层楼偏差正负八的话,要求高的话,就尽量用铝合金模板,这种工艺混凝土成型质量好

算法的选择就像是选施工工艺,评估标准就是结果精度,这个精度可以是精准率、召回率、F1-score、AP值、mAP值、AUC等等。

1.2 算法设计/选型与数据准备

普通工程师选算法,研究员设计算法。工程师,就是个搭积木的,我不创造积木,当然偶尔有些想法能搞些出奇效的组合。

数据准备,需要去获取训练算法模型的数据集。这个活量大、技术含量低,一般外包给别人去做。到底需要多少量的数据,看经验,也看实际算法的结果。业内流传着一句话,决定算法精度的不是算法本身,而是数据,数据越大,效果也会更好,泛化性更强。

数据标签如果格式是VOC/XML的,如果需要转换成YOLO之类的格式的,又或者是CSV的需要转换成VOC的,转来转去,都只是一种形式,就像美少女衣服换来换去,关上灯还是一样的。

1.3 模型训练

有了算法、有了数据,就以训练了。

1.4 模型压缩

弄出来的模型参数量太大,上千万级别挺常见。这一堆参数就像是臃肿的机构,一开始咱也不知道谁能干谁不能干,但咱知道先把人堆起来,神奇的事情发生了,这机构的职能可以正常工作。所以也就暂且不管那些尸位素餐或者爱躺平的家伙了。慢慢地你会发现,能干的人越干越多,不能干的可有可无,浪费国家粮食。是不是像极了大企业大机构里的现象?臃肿就会导致给老百姓办事慢,做事效率低,还费钱。反应到算法上就是,模型占用内存大,模型推理速度慢。

模型剪枝,就是在给这个臃肿的机构裁员,能干的留下,不能干的(反应到参数上就是权重过小)滚蛋,今年裁它丫的50%,就真剩下50%的人(参数)了。工作量就像是水,盛它的小湖小沟少了,就自然要重新分流了。于时剪枝过后,还是要对算法fine-tune一下的。

模型蒸馏,这个还不会,以后弄明白了再说。

模型量化,简单理解为,在机构中以前管理很严格,表面工作很多,每次同事之间有点事情都需要写个报告,繁琐且没必要,耽误事儿。这类比的就是将FP32精度的权重,转换成FP16半精度甚至INT8的。每次有事同事之间不用搞那么仔细,随便说一下就行,这办事效率不就上来了么?但同样也会存在事情没说清楚的情况,导致结果有点偏差。

1.5 模型格式转换

这个世界有很多个国家,也有很多种语言,同样每个行业中也有很多种规范。比如建筑行业中,不同国家的设计标准是不一样的,即使是在中国不同省份的设计标准也有一些差异。这就是这个世界没有大一统整出来的费劲玩意儿,五花八门的框架,Pytorch, Caffe, Tensorflow, Keras, MXNet, Paddle-Paddle...

到模型部署的时候,硬件与软件支持的又有点儿不一样了,这些玩意儿弄出的模型格式不能用了,看不懂了,玩不转了。最后你还是得统一一下标准和格式,是要有GB(国标)还是要用BS(英标)还是要用ASTM(美标),不然承包商都不知道要什么要求干活,监理方也不知道按什么要求验收了。

这里有一个较为通用的格式ONNX,许多家推出深度学习框架的公司一起搞出来的,好比是一个通用标准。OpenVINO, TensorRT等常用的推理框架都支持。

2. 算法部署

2.1 部署框架选择

深度学习的框架有好多久,就像设计规范有好多种,最后要确定一种施工方能够接受的,熟悉的,适应的。有了模型,就好比是建筑业中有了设计,承包商拿到图纸后,得把房子盖起来。盖房子的过程好比是算法部署。

部署有很多种,有部署在服务器,部署在工控机,部署在手机,有的用的TPN(Tensor Processing Unit) / NPU(Neural Processing Unit) ,有的用的GPU(Graphic Processing Uint),  有的用的CPU。不同的平台不同设备资源,好比是干工地的,有的用挖机挖土,有的用人工挖土;打灰的有的用汽车泵打灰,有的人工推个小车打灰;有的工艺速度快,有的速度慢。

针对于不同部署环境,就有了不同的工艺和方法,也就是不同的推理框架。

有OpenVINO, TensorRT, NCNN, MCN, OnnxRuntime, TFLite, PyTorch Mobile等。

2.1 前处理与后处理

在模型训练、测试前是需要将数据进行预处理的,包括有必要的数据仿射变换(缩放、平移、旋转)、标准化、归一化、通道转换(BGR2RGB)等,训练阶段还包括诸如Mosaic, CopyPaste, HSV, RandomCrop, Flip, RandomScale等数据增强的处理。

模型输出的结果,还需要进行数据解码的操作。这些操作在部署是一样需要的。

2.2 模型推理

这些个推理框架封装了算法模型的解析工具,比如TensorRT里面就有NvOnnxParser这个工具,可以将导出的onnx格式的算法进行一个转换。当然也可以,利用TensorRT中内置的网络层重新构建一个算法模型。如果对网络层有定制化需求,也可以写一个TensorRT的插件。

有问题的是,为什么训练得到的模型不能直接用于部署呢?这是个好问题,这个世界破破烂烂,总有人缝缝补补。

2.3 打包生成SDK

这一堆玩意儿都写完后,整个项目并没有完,别人还是需要去调用这个推理代码。比如做了个可视化界面,用户可以拿起小鼠标点一点,就可以运行你的推理过程,又或者是自动的,总之还是有一些其它开发的活要做的,推理只是项目的一部分。

这时,做完了推理部署的代码后,需要将其打包,然后最好仅提供给别人几个它需要的接口即可。所谓接口,就好比是你使用"cout << "hello world!" << endl;" 一样,只是引入了一个头文件,然后编译时链接库文件即可。你要做的,就是把代码封装起来,编译成.so(动态库)或者.a(静态库)以及头文件,方便别人调用。所以在代码编写之前就要设计好,最后提供接口即可。

2.4 RAII + 接口类

RAII(Resource Acqusition Is Initialization), 资源获取即初始化。待补全。

最后的最后,还是借用一下别的人图片方便理解吧。

<think>好的,用户之前问了关于ConcurrentHashMap如何保证线程安全的问题,现在他们想深入了解JVM的部分。我需要先确定他们具体对JVM的哪些方面感兴趣,因为JVM涵盖的内容非常广泛,比如内存管理、垃圾回收、类加载机制、JIT编译器、执行引擎等。可能用户需要更具体的指导,但既然他们要求详细展开,我需要覆盖主要部分,同时保持结构清晰。 首先,用户可能是Java开发者,或者正在学习Java,对底层原理感兴趣。他们在之前的问题中关注的是并发线程安全,现在可能想扩展到JVM的整体理解,或者想了解JVM如何支持像ConcurrentHashMap这样的高并发数据结构。因此,我需要确保内容既全面又有深度,同时结合之前的并发主题,可能需要在适当的地方联系起来。 接下来,我需要组织内容。JVM的主要部分包括内存区域、垃圾回收、类加载、执行引擎、JIT编译、性能调优等。我应该分模块讲解,每个部分详细展开,比如内存区域中的堆、方法区、虚拟机栈等,垃圾回收的算法收集器,类加载的过程,以及JIT如何优化代码。此外,用户可能对性能调优工具感兴趣,可以加入一些实际例子或参数配置。 需要注意的是,用户可能对某些术语不太熟悉,所以需要用通俗的语言解释,同时保持专业性。比如,在解释垃圾回收时,可以区分不同的收集器,如G1、CMS、ZGC,并说明它们的适用场景。在内存区域部分,要提到各个区域的作用可能出现的异常,比如堆溢出、栈溢出等。 另外,结合用户之前的问题,可能可以提到JVM如何管理内存,影响ConcurrentHashMap的性能,比如堆内存的分代结构对对象存活时间的影响,或者垃圾回收对高并发应用的影响。不过,这可能需要在适当的地方提及,避免偏离主题。 还要考虑用户可能想知道如何监控调优JVM,比如常用的工具如jstat、jmap、VisualVM等,以及常见的JVM参数如-Xmx、-Xms、-XX:+UseG1GC等。这部分内容可以放在最后,作为实际应用的指导。 最后,总结部分需要强调JVM的重要性,以及各部分如何协同工作来支持Java应用的高效运行。可能还需要提到不同版本的JVM改进,比如Java 8到Java 17在垃圾回收内存管理上的变化,帮助用户了解最新动态。 在回答过程中,要确保结构清晰,每个部分有明确的标题子标题,使用例子代码片段来说明概念,比如演示一个内存溢出的例子,或者展示如何设置JVM参数。同时,注意使用中文术语,避免直接翻译导致的歧义,比如“垃圾回收”而不是“Garbage Collection”。 总之,我需要系统地介绍JVM的各个核心部分,结合实际应用场景示例,帮助用户全面理解JVM的工作原理调优方法,同时保持内容详实且易于理解。</think>以下是关于JVM(Java虚拟机)核心机制的详细展开,涵盖内存管理、垃圾回收、类加载、执行引擎等关键部分,结合示例与设计原理进行说明: --- ### **一、JVM内存区域划分** JVM内存划分为多个区域,各司其职。以**JDK 8**为例,内存结构如下: #### 1. **程序计数器(Program Counter Register)** - **作用**:记录当前线程执行指令的地址(分支、循环、跳转等依赖此区域)。 - **特性**: - 线程私有,生命周期与线程相同。 - 唯一不会发生`OutOfMemoryError`的区域。 #### 2. **虚拟机栈(Java Virtual Machine Stacks)** - **作用**:存储方法调用的栈帧(Stack Frame),包括局部变量表、操作数栈、动态链接、方法出口等。 - **异常**: - `StackOverflowError`:栈深度超过限制(如无限递归)。 - `OutOfMemoryError`:扩展栈时无法申请足够内存(少见)。 - **示例**: ```java public class StackDemo { public static void recursiveCall() { recursiveCall(); // 无限递归触发StackOverflowError } public static void main(String[] args) { recursiveCall(); } } ``` #### 3. **本地方法栈(Native Method Stack)** - **作用**:为Native方法(如C/C++代码)提供栈空间。 - **异常**:与虚拟机栈类似。 #### 4. **堆(Heap)** - **作用**:存储对象实例数组(所有线程共享)。 - **分代设计**: - **新生代(Young Generation)**:分为Eden区、Survivor区(From/To)。 - **老年代(Old Generation)**:长期存活的对象。 - **元空间(Metaspace,JDK8+)**:取代永久代(PermGen),存储类元数据。 - **异常**:`OutOfMemoryError: Java heap space`(对象过多且无法回收)。 #### 5. **方法区(Method Area)** - **作用**:存储类信息、常量、静态变量、即时编译器代码。 - **实现**: - JDK7及之前:永久代(PermGen)。 - JDK8+:元空间(Metaspace,使用本地内存)。 - **异常**:`OutOfMemoryError: Metaspace`(加载类过多)。 --- ### **二、垃圾回收(Garbage Collection, GC)** #### 1. **对象存活判定** - **引用计数法**(JVM未采用):循环引用问题。 - **可达性分析**(JVM实际使用): - 从GC Roots(如虚拟机栈局部变量、静态变量等)出发,标记不可达对象为垃圾。 #### 2. **垃圾回收算法** - **标记-清除(Mark-Sweep)**: - 标记垃圾后直接清除。 - **问题**:内存碎片。 - **复制(Copying)**: - 将存活对象复制到另一块内存(用于新生代)。 - **示例**:Eden区存活对象复制到Survivor区。 - **标记-整理(Mark-Compact)**: - 标记后移动存活对象到一端(用于老年代)。 - **分代收集(Generational Collection)**: - 新生代用复制算法,老年代用标记-清除或标记-整理。 #### 3. **垃圾收集器** | 收集器 | 特点 | |-----------------------|--------------------------------------------------------------------| | **Serial** | 单线程,适合客户端应用(低延迟敏感)。 | | **Parallel Scavenge** | 多线程,关注吞吐量(适合后台计算)。 | | **CMS** | 并发标记清除,低停顿(已废弃)。 | | **G1(Garbage-First)** | 分Region收集,可预测停顿(JDK9+默认)。 | | **ZGC** | 低延迟(<10ms),支持TB级堆(JDK15+生产可用)。 | #### 4. **GC日志分析** 示例GC日志片段: ``` [GC (Allocation Failure) [PSYoungGen: 8192K->1024K(9216K)] 12288K->8192K(20480K), 0.002s] ``` - **含义**:新生代(PSYoungGen)从8192KB回收至1024KB,总堆内存从12288KB降至8192KB,耗时0.002秒。 --- ### **三、类加载机制** #### 1. **类加载过程** 1. **加载(Loading)**: - 读取类文件(.class)到内存,生成`Class`对象。 2. **验证(Verification)**: - 校验字节码是否符合JVM规范。 3. **准备(Preparation)**: - 为静态变量分配内存并赋初始值(如`int`初始为0)。 4. **解析(Resolution)**: - 将符号引用转换为直接引用。 5. **初始化(Initialization)**: - 执行静态代码块(`<clinit>`方法)。 #### 2. **类加载器** - **启动类加载器(Bootstrap ClassLoader)**: - 加载`JAVA_HOME/lib`下的核心类(如`java.lang.*`)。 - **扩展类加载器(Extension ClassLoader)**: - 加载`JAVA_HOME/lib/ext`目录。 - **应用程序类加载器(Application ClassLoader)**: - 加载用户类路径(ClassPath)的类。 - **自定义类加载器**: - 实现`ClassLoader`,用于热部署、模块化等场景。 #### 3. **双亲委派模型** - **机制**:类加载请求优先委派父加载器处理,避免重复加载。 - **破坏场景**: - SPI(Service Provider Interface)加载驱动(如JDBC)。 - OSGi模块化动态加载。 --- ### **四、执行引擎与JIT编译器** #### 1. **解释执行与编译执行** - **解释器**:逐行解释字节码,启动速度快。 - **JIT编译器(Just-In-Time)**: - 将热点代码(频繁执行的代码)编译为本地机器码。 - **优化手段**:方法内联、逃逸分析、循环展开等。 #### 2. **分层编译(Tiered Compilation)** - **级别**: - 0级:纯解释执行。 - 1-3级:C1编译器(Client Compiler)优化。 - 4级:C2编译器(Server Compiler)深度优化。 #### 3. **逃逸分析示例** ```java public class EscapeAnalysis { public static void createObject() { Object obj = new Object(); // 对象未逃逸出方法,可能被栈上分配 } } ``` - **优化结果**:对象直接在栈上分配,减少GC压力。 --- ### **五、JVM监控与调优** #### 1. **常用工具** - **命令行工具**: - `jps`:查看Java进程。 - `jstat`:监控GC状态(如`jstat -gcutil <pid> 1000`)。 - `jmap`:生成堆转储(`jmap -dump:format=b,file=heap.bin <pid>`)。 - `jstack`:打印线程栈(分析死锁)。 - **图形化工具**: - VisualVM、JConsole、Arthas。 #### 2. **调优参数示例** - **堆内存设置**: ```bash -Xms4g -Xmx4g # 初始堆=最大堆(避免动态扩展) ``` - **选择垃圾收集器**: ```bash -XX:+UseG1GC # 启用G1收集器 -XX:MaxGCPauseMillis=200 # 目标最大停顿时间 ``` - **元空间限制**: ```bash -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=256m ``` #### 3. **常见问题与解决** - **频繁Full GC**: - 检查内存泄漏(`jmap`分析对象分布)。 - 调整新生代/老年代比例(`-XX:NewRatio`)。 - **CPU占用高**: - 使用`jstack`抓取线程栈,排查死循环或锁竞争。 --- ### **六、JVM与并发编程** #### 1. **内存模型(JMM)** - **Happens-Before规则**: - 保证指令重排序下的可见性(如`volatile`写先于读)。 - **内存屏障**: - 通过`volatile`、`synchronized`等插入屏障指令。 #### 2. **锁优化** - **偏向锁**:减少无竞争时的锁开销。 - **轻量级锁**:通过CAS避免线程阻塞。 - **适应性自旋(Adaptive Spinning)**:根据历史成功率动态调整自旋次数。 --- ### **总结** JVM通过内存划分、垃圾回收、类加载、JIT编译等机制,实现了跨平台、高效的内存管理代码执行。理解其内部原理,能够帮助开发者优化应用性能(如减少GC停顿)、诊断内存泄漏,并编写高效并发代码。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值