Lyapunov equation,sylvester equation and ricatti quation
今天在学习《output regulation》西尔韦斯特方程有解的证明时,猛然想到这太像前面学习的李雅普诺夫方程了,一看,真的完全是一样的,证明的方式都差不多,几乎完全一样,后面根据其他博客的学习在拓展一种新的方程Riccati方程。
-
Lyapunov方程
AM+MB=CAM+MB=CAM+MB=C
很重要的是关于其中A(M):=AM+MB\Alpha(M):=AM+MBA(M):=AM+MB特征值是矩阵A与矩阵B的特征值和的证明
令μ\muμ 是矩阵A对应于特征值λi\lambda_iλi的右特征值,所以Aμ=λiμA\mu=\lambda_i\muAμ=λiμ;令vvv为矩阵B对应于特征值μj\mu_jμj的左特征值,所以vB=vμjvB=v\mu_jvB=vμj,将矩阵uvuvuv作为变量带入映射A\AlphaA,我们可以得到
Λ(uv)=Auv+uvB=λiuv+uvμj=(λi+μj)uv \Lambda(uv)=Auv+uvB=\lambda_iuv+uv\mu_j=(\lambda_i+\mu_j)uv Λ(uv)=Auv+uvB=λiuv+uvμj=(λi+μj)uv
在线性系统中的应用:
比如说,我们对于可控的线性系统可以通过状态反馈任意配置系统的特征值,在计算相应的feedback gain的时候,我们可以利用计算lyapunov equation的方式计算。 -
Sylvester方程
一般的Sylvester方程的形式:A∈Rm×m,B∈Rn×nA \in \mathbb{R}^{m\times m},B \in \mathbb{R}^{n\times n}A∈Rm×m,B∈Rn×n
XA−BX=QXA-BX=QXA−BX=Q
《output regulation》这本书中给出的证明是通过克罗内克积去证明的,其实最本质的东西没说出来,为什么特征值就是两个矩阵特征值的差。
Sylvester equation方程有解的有唯一解的充分必要条件是AAA,BBB 没有公共特征值。
证明用到了克罗内克积与向量函数(vector-valued function)
首先给出一个克罗内克积的性质:
vec(BXA)(BXA)(BXA)=(AT⊗B)(A^T \otimes B)(AT⊗B)vec(X)(X)(X)
在线性系统输出调节中的应用: -
Ricatti方程
Algebraic Riccati equation(代数黎卡提方程):
ATP+PA−PBR−1BTP+Q=0A^{T} P+P A-P B R^{-1} B^{T} P+Q=0ATP+PA−PBR−1BTP+Q=0
一般的简化形式为:
ATP+PA+In−PBBTP=0A^TP+PA+I_n-PBB^TP=0ATP+PA+In−PBBTP=0
此方程具有很多的解,不过我们想要求得其使得相关的LQR系统闭回路的系统稳定的稳定唯一解,只有当系统(A,B)是可控的时候,方程有唯一一个正定解。