python实现多层次模糊综合评价

本文深入探讨了权重确定的两种核心算法:频数统计法和模糊层次分析法。详细介绍了算法的理论基础,提供了Python实现代码,包括频数统计法确定权重、模糊层次分析法的一致性检验及权重计算,以及综合评价算法的实现。适合于理解和应用在多准则决策分析中的权重确定方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法简介

在这里插入图片描述
在这里插入图片描述

调用示例

例题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

具体实现

权重 ak 的确定

频数统计法确定权重

算法理论

在这里插入图片描述

算法代码
def frequency(matrix,p):
    '''
    频数统计法确定权重
    :param matrix: 因素矩阵
    :param p: 分组数
    :return: 权重向量
    '''
    A = np.zeros((matrix.shape[0]))
    for i in range(0, matrix.shape[0]):
        ## 根据频率确定频数区间列表
        row = list(matrix[i, :])
        maximum = max(row)
        minimum = min(row)
        gap = (maximum - minimum) / p
        row.sort()
        group = []
        item = minimum
        while(item < maximum):
            group.append([item, item + gap])
            item = item + gap
        print(group)
        ## 初始化一个数据字典,便于记录频数
        dataDict = {}
        for k in range(0, len(group)):
            dataDict[str(k)] = 0
        ## 判断本行的每个元素在哪个区间内,并记录频数
        for j in range(0, matrix.shape[1]):
            for k in range(0, len(group)):
             if(matrix[k, j] >= group[k][0]):
                 dataDict[str(k)] = dataDict[str(k)] + 1
             break
        print(dataDict)
        ## 取出最大频数对应的key,并以此为索引求组中值
        index = int(max(dataDict,key=dataDict.get))
        mid = (group[index][0] + group[index][1]) / 2
        print(mid)
        A[i] = mid
    A = A / sum(A[:]) ## 归一化
    return A

   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

模糊层次分析法确定权重

算法理论

在这里插入图片描述
在这里插入图片描述

算法代码
def AHP(matrix):
    if isConsist(matrix):
        lam, x = np.linalg.eig(matrix)
        return x[0] / sum(x[0][:])
    else:
        print("一致性检验未通过")
        return None

def isConsist(matrix):
‘’’
:param matrix: 成对比较矩阵
:return: 通过一致性检验则返回true,否则返回false
‘’’
n = np.shape(matrix)[0]
a, b = np.linalg.eig(matrix)
maxlam = a[0].real
CI = (maxlam - n) / (n - 1)
RI = [0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45]
CR = CI / RI[n-1]
if CR < 0.1:
return True, CI, RI[n-1]
else:
return False, None, None

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

综合评价

算法理论

在这里插入图片描述

算法代码

其中算子的算法在另一篇博客中https://blog.csdn.net/weixin_44112790/article/details/88090412

def appraise(criterionMatrix, targetMatrixs, relationMatrixs):
    '''
    :param criterionMatrix: 准则层权重矩阵
    :param targetMatrix:    指标层权重矩阵列表
    :param relationMatrixs: 关系矩阵列表
    :return:
    '''
    R = np.zeros((criterionMatrix.shape[1], relationMatrixs[0].shape[1]))
    for index in range(0, len(targetMatrixs)):
        row = mul_mymin_operator(targetMatrixs[index], relationMatrixs[index])
        R[index] = row
    B = mul_mymin_operator(criterionMatrix, R)
    return B / sum(B[:])

 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
                </div>
                <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e44c3c0e64.css" rel="stylesheet">
                                </div>