集成学习③——Sklearn-Adaboost库参数及实战

本文介绍了Adaboost库的参数,包括AdaBoostClassifier和AdaBoostRegressor的框架参数,如base_estimator、n_estimators、learning_rate等,并讨论了弱学习器的选择和参数。通过实例展示了Adaboost在分类和回归问题中的应用,强调了其在提高模型性能方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

集成学习系列目录

集成学习①——集成学习原理、分类和结合方法
集成学习②——Adaboost算法原理及python实现

一、Adaboost库参数介绍

Adaboost库分为AdaBoostClassifier(分类)和AdaBoostRegressor(回归),两者的参数相近,均包括Adaboost框架参数和使用的弱学习器参数,详细如下:
在这里插入图片描述
在这里插入图片描述
1、框架参数

base_estimator: 弱学习器,AdaBoostClassifier和AdaBoostRegressor都有。理论上可以选择任何一个分类或者回归学习器,不过需要支持样本权重。常用的一般是CART决策树或者神经网络MLP。如果选择的AdaBoostClassifier算法是SAMME.R,则我们的弱分类学习器还需要支持概率预测,也就是在scikit-learn中弱分类学习器对应的预测方法除了predict还需要有predict_proba。

n_estimators: 弱学习器数量,两者都有,一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是5

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值