1.dectAndCompute
def detectAndCompute(self, image, mask, descriptors=None, useProvidedKeypoints=None):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
Detects keypoints and computes the descriptors
参数 | 描述 |
---|---|
image | 需要计算的图片 |
mask | 遮罩,一般设为None |
2.FlannBasedMatcher
cv.FlannBasedMatcher( [, indexParams[, searchParams]] )
3.cv.findHomography
retval, mask = cv.findHomography( srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask[, maxIters[, confidence]]]]] )
参数 | 描述 |
---|---|
image | 原始图像 |
keypoints | 特征点向量,每个元素对应一个特征的信息 |
outImage | 特征点绘制的图像 |
color | 特征点颜色 |
flags | 绘制模式 |
模式 | 描述 |
---|---|
DEFAULT | 只绘制特征点 |
DRAW_OVER_OUTIMG | |
NOT_DRAW_SINGLE_POINTS | 单点特征不会被绘制 |
DRAW_RICH_KEYPOINTS | 显示丰富的信息 |
kps | 描述 |
---|---|
angle | 关键点的方向 |
class_id | 图片分类 |
octave | 金字塔层数 |
pt | 关键点坐标 |
response | 特征点强度 |
size | 直径大小 |