逻辑回归是一个监督学习,输出是0或1.逻辑回归的目标是最小化预测值和训练集之间的误差.
比如在判断图片时.
Givenx,y^=P(y=1∣x),where0≤y^≤1Given x,\hat{y} =P(y = 1|x),where 0 \leq \hat{y} \leq 1Givenx,y^=P(y=1∣x),where0≤y^≤1
x∈Rnxx \in R^{n_x}x∈Rnx,nxn_xnx是特征的数量
y∈0,1y \in 0,1y∈0,1 训练的标签
w∈Rnxw \in R^{n_x}w∈Rnx,nxn_xnx是特征的数量
b∈Rb \in Rb∈R是偏置
y^=σ(wTx+b)\hat{y} = \sigma(w^Tx+b)y^=σ(wTx+b) 预测结果
s=σ(wTx+b)=σ(z)=11+e−zs=\sigma(w^Tx+b)=\sigma(z)=\frac{1}{1+e^{-z}}s=σ(wTx+b)=σ(z)=1+e−z1
wTx+bw^Tx+bwTx+b是线性方程(ax+b)(ax+b)(ax+b),因为我们要找的是[0,1]之间的概率,所以会使用sigmoid函数.