2.2 logistic 回归

在这里插入图片描述

逻辑回归是一个监督学习,输出是0或1.逻辑回归的目标是最小化预测值和训练集之间的误差.
比如在判断图片时.
Givenx,y^=P(y=1∣x),where0≤y^≤1Given x,\hat{y} =P(y = 1|x),where 0 \leq \hat{y} \leq 1Givenx,y^=P(y=1x),where0y^1

x∈Rnxx \in R^{n_x}xRnx,nxn_xnx是特征的数量
y∈0,1y \in 0,1y0,1 训练的标签
w∈Rnxw \in R^{n_x}wRnx,nxn_xnx是特征的数量
b∈Rb \in RbR是偏置
y^=σ(wTx+b)\hat{y} = \sigma(w^Tx+b)y^=σ(wTx+b) 预测结果
s=σ(wTx+b)=σ(z)=11+e−zs=\sigma(w^Tx+b)=\sigma(z)=\frac{1}{1+e^{-z}}s=σ(wTx+b)=σ(z)=1+ez1

wTx+bw^Tx+bwTx+b是线性方程(ax+b)(ax+b)(ax+b),因为我们要找的是[0,1]之间的概率,所以会使用sigmoid函数.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值