
论文阅读
文章平均质量分 94
路径规划和目标检测的论文阅读
写Bug那些事
开始学习!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Rich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)
论文阅读文章地址Rich feature hierarchies for accurate object detection and semantic segmentation 论文阅读一、Object detection with R-CNN1.1 模块设计1.2.测试时间检测1.3 训练二、R-CNN训练过程2.1 选出潜在目标候选框(ROI)2.2 训练一个好的特征提取器2.3 训练最终的分类器2.4 训练回归模型三、预测四、R-CNN存在的问题总结目标检测之R-CNN这篇文章提出了一种简单且原创 2021-07-03 17:05:43 · 622 阅读 · 1 评论 -
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION-2014
论文阅读文章地址VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION论文阅读摘要一、Introduction二、CONVNET CONFIGURATIONS2.1 ARCHITECTURE三、分类框架3.1 TRAINING3.1.1 Training image size3.2 TESTING3.3 本地响应标准化3.4 重叠池化3.5 总体结构四、减少过拟合4.1 方法一:数据增强4.2 方法二:Dropout五、De原创 2021-06-30 23:26:50 · 1165 阅读 · 15 评论 -
ImageNet Classification with Deep Convolutional Neural Networks
论文阅读文章地址ImageNet Classification with Deep ConvolutionalNeural Networks论文阅读3.1 激活函数3.2 多种GPU的训练3.3 本地响应标准化3.4 重叠池化3.5 总体结构四、减少过拟合4.1 方法一:数据增强4.2 方法二:Dropout五、Details of learning六、结论6.1 评估7、成果参考文献Neural Networks)# 摘要 作者训练了一个大型深度卷积神经网络来将ImageNet LS原创 2021-06-29 10:52:11 · 2152 阅读 · 17 评论 -
Multiple Anchor Learning for Visual Object Detection
论文阅读文章地址开源代码Multiple Anchor Learning for Visual Object Detection论文阅读一、论文工作概述二、论文研究情况2.1 anchor的选择2.2 RetinaNet框架2.3 MAL方法实现2.4 MAL方法流程总结:2.5 selection-depression优化策略2.5.1 Anchor Selection2.5.2 Optimization Analysis三、实验和总结3.1 MAL与RetinaNet对比试验3.2 基于COCO原创 2021-06-16 22:38:22 · 1437 阅读 · 2 评论 -
Deep Reinforcement Learning for Motion Planning of Mobile Robots
论文阅读Butyrev L, Edelhäußer T, Mutschler C. 移动机器人运动规划的深度强化学习[J]. arXiv 预印本 arXiv:1912.09260, 2019。文章地址Deep Reinforcement Learning for Motion Planning of Mobile Robots论文阅读一、INTRODUCTION二、BACKGROUND ON REINFORCEMENT LEARNING2.1 马尔可夫决策过程2.2 强化学习2.3 DDPG2.4原创 2021-06-06 23:24:14 · 1235 阅读 · 0 评论 -
Path Planning for UAV Ground Target Tracking via Deep Reinforcement Learning(IEEE Access-2020)
随着人工智能技术的快速发展,深度强化学习(DRL)凭借其优秀的环境意识和决策控制性能在越来越多的领域发挥了重要作用。强化学习可以直接将环境状态映射到控制信号,为无人机轨迹规划提供了一种动态规划解决方案。在在线路径规划过程中,飞行环境通常是本地的或完全未知的。如何利用不完整信息对动态环境做出反应是无人机在线路径规划中的一个关键问题。强化学习具有鲁棒性强、独立于环境模型和先验知识的优点,通过试错解决了在线路径规划问题。原创 2021-06-05 16:55:36 · 2961 阅读 · 5 评论