对标yaahp的python工具包

这篇博客探讨了如何利用Python中的AHP工具包(如krispy, ahp, firehole)来估计保险公司的指标体系权重。由于AHP软件yaahp不适用于线上环境,作者建议结合sklearn的预处理方法,考虑采用TOPSIS等客观评价模型,并推荐了scikit-mcda、pymcdm和mcdm等库进行系统实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两月和客户做指标体系,需要用AHP方法估计指标体系的主题标签权重。保险公司通常都是需要做成线上系统的,虽然用AHP软件yaahp很直观,但不方便线上运行。

Python有几个AHP工具包:

1、krispy

2、ahpy

3、firehole

sklearn的preprocessing提供了数据归一化、标准化的方法。

客观评价方法如TOPSIS,可以试试scikit-mcda、pymcdm、mcdm。

再评估一下这些包,写几个方法试试,这个系统就可以动笔了。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值