1,map()与reduce()
map()函数接收两个参数,一个是函数,一个是Iterabled对象,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
例子如下:
a = list(map(int, '1234568'))
print(a)
#[1, 2, 3, 4, 5, 6, 8]
reduce()把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做计算,其效果就是:reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
例子如下:
from functools import reduce
def add(x,y):
return x*y
result = reduce(add,[1,2,3,4,5]) #求5!
print(result)
#120
2,filter()
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例子如下:
#去掉字符串中的空格
b = list(filter(lambda a:a!=' ','454 85 68'))
print(b)
#删除偶数,值保留奇数
b = list(filter(lambda a: a%2==1, [1, 2, 4, 5, 6, 9, 10, 15]))
print(b)
3,sorted()
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()函数就可以对list进行排,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
a = sorted([36, 5, -12, 9, -21], key=abs)
print(a)