HybrIK:用于3D人体姿势和形状估计的混合分析神经逆运动学解决方案
arXiv - CS - Computer Vision and Pattern Recognition Pub Date : 2020-11-30 , DOI: arxiv-2011.14672
Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang, Cewu Lu
- 基于模型的3D姿势和形状估计方法通过估计几个参数为人体重建完整的3D网格。然而,学习抽象参数是高度非线性的过程,并且遭受图像模型未对准的困扰,从而导致中等的模型性能。相比之下,3D关键点估计方法将深度CNN网络与体积表示相结合,以实现像素级定位精度,但可能会预测不现实的身体结构。在本文中,我们通过弥合人体网格物体估计与3D关键点估计之间的差距来解决上述问题。
- 我们提出了一种新颖的混合逆运动学解决方案(HybrIK)。HybrIK通过扭曲和摆动分解将准确的3D关节直接转换为相对的身体部位旋转,以进行3D身体网格重建。旋转旋转通过3D关节解析解决,而旋转旋转则通过神经网络从视觉提示中得出。
- 我们显示,