【ai】配置hybrik环境

HybrIK:用于3D人体姿势和形状估计的混合分析神经逆运动学解决方案

arXiv - CS - Computer Vision and Pattern Recognition Pub Date : 2020-11-30 , DOI: arxiv-2011.14672
Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang, Cewu Lu

  • 基于模型的3D姿势和形状估计方法通过估计几个参数为人体重建完整的3D网格。然而,学习抽象参数是高度非线性的过程,并且遭受图像模型未对准的困扰,从而导致中等的模型性能。相比之下,3D关键点估计方法将深度CNN网络与体积表示相结合,以实现像素级定位精度,但可能会预测不现实的身体结构。在本文中,我们通过弥合人体网格物体估计与3D关键点估计之间的差距来解决上述问题。
  • 我们提出了一种新颖的混合逆运动学解决方案(HybrIK)。HybrIK通过扭曲和摆动分解将准确的3D关节直接转换为相对的身体部位旋转,以进行3D身体网格重建。旋转旋转通过3D关节解析解决,而旋转旋转则通过神经网络从视觉提示中得出。
  • 我们显示,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

等风来不如迎风去

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值