梳理实现“文本输入检索动作”的完整技术体系结构,包括支持标签分类、特征对齐的相关研究方向,并总结来自动作识别、自然语言处理和跨模态检索等领域的代表性论文与核心原理。
文本检索动作数据的研究综述
引言
在动画制作、虚拟人和人机交互等领域,常常希望通过自然语言描述来查找对应的人体动作数据。例如,输入**“一名人体向右转身后举手挥动**”,系统应检索出数据库中与之语义吻合的3D动作序列。这一任务通常称为文本到动作检索(Text-to-Motion Retrieval),涉及跨越文本模态和动作模态的匹配与理解。近年来,该方向逐渐受到关注,出现了多种新数据集和方法支持更细粒度的检索。
图:HumanML3D数据集中动作序列及其对应的文本描述示例。研究者通过众包标注为3D动作序列配备多样的自然语言描述,以支持文本驱动的检索与生成。每个动作片段通常有3-4条描述,涵盖姿态、运动轨迹、身体部位及风格等信息。
本文将系统梳理实现“文本输入检索动作数据”所涉及的主要研究方向、技术原理和代表性工作。首先介绍典型的系统架构,随后讨论关键技术(包括动作和文本的编码表示以及跨模态对齐方法)